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Abstract

There is a long tradition in sensory neuroscience of fitting precise neural computational

models to experimental data. In a series of combined empirical and computational investi-

gations, I illustrate important constraints on the encoding, retention, and read-out of infor-

mation relating to luminance contrast in the visual world, a fundamental building block of

vision. Using two-interval, forced-choice discrimination tasks, I first demonstrate that the

efficiency of luminance contrast encoding-decoding is greatly impeded when high-contrast

distractors appear in the opposite visual hemifield to a target stimulus; this behavior con-

trasts with relatively more efficient performance observed on an orthogonal task (orienta-

tion discrimination). I then explore a neural computational model of these results based

on Fisher information, and find that, given a particular tuning parameterization, neither of

two common models of sensory interaction satisfactorily explain both datasets simultane-

ously. In a later delayed-estimation experiment, I directly measure the precision with which

single estimates of luminance contrast are encoded, maintained, and read-out from mem-

ory. The shape of observers’ estimate distributions are adequately replicated by a proba-

bilistic model of performance based on neurally-inspired components. In sum, the present

thesis highlights key factors governing the precision of luminance contrast encoding and

decoding, using complementary empirical and computational approaches. The thesis find-

ings are also relevant to the broader literatures on attentional selection and the short-term

retention of sensory information.

iv



Contents

Acknowledgements iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Behavioral measures of stimulus encoding and decoding . . . . . . . . . . 3
1.3 Neural basis of stimulus encoding and decoding . . . . . . . . . . . . . . . 6
1.4 Encoding-decoding performance under more natural conditions . . . . . . 10
1.5 Thesis synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Efficient and inefficient selection from the same sensory neural re-
sponse: psychophysics 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



3 Efficient and inefficient selection from the same sensory neural re-
sponse: computational model 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Delayed estimation of luminance contrast 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Conclusion 83
5.1 Encoding-decoding models of luminance contrast processing . . . . . . . . 83
5.2 Implications for research on attentional selection . . . . . . . . . . . . . . 84
5.3 Implications for the study of VSTM . . . . . . . . . . . . . . . . . . . . . 86
5.4 Neural noise and encoding-decoding . . . . . . . . . . . . . . . . . . . . 88
5.5 Final comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

References 97

vi



List of Figures

1.1 Discrimination behavior and tuning functions for contrast and orientation . 8

2.1 Sensory discrimination in the presence of distractors: experiments . . . . . 21
2.2 Sensory discrimination in the presence of distractors: data . . . . . . . . . 32
2.3 Sensory discrimination in the presence of distractors: control analyses . . . 36

3.1 Sensory discrimination for isolated stimuli: encoding-decoding model . . . 44
3.2 Sensory discrimination for isolated stimuli: model fits . . . . . . . . . . . . 55
3.3 Sensory discrimination in the presence of distractors: model fits . . . . . . 57

4.1 Delayed estimation of luminance contrast: experiment . . . . . . . . . . . 67
4.2 Delayed estimation of luminance contrast: encoding-decoding model . . . . 72
4.3 Delayed estimation of luminance contrast: data . . . . . . . . . . . . . . . 75
4.4 Delayed estimation of luminance contrast: model fits . . . . . . . . . . . . 77

vii



List of Tables

2.1 Sensory discrimination in the presence of distractors: randomization analyses 34

3.1 Sensory discrimination in the presence of distractors: model fits . . . . . . 58

4.1 Delayed estimation of luminance contrast: model parameters . . . . . . . . 79

viii



Perstando et praestando utilitati.

Original motto of New York University

1
Introduction

1.1 Overview

Progress in sensory neuroscience can greatly benefit from a tight interplay between

experiment and model fitting. While some experimental work is exploratory or descriptive

in nature, there is a long tradition of experiments explicitly designed in order to quantita-

tively distinguish theories. Successful quantitative model fitting allows for stronger con-

clusions about data than conventional model-free analyses, while deviations from model

predictions or otherwise unexpected results provide strong clues as to how a theory must be

modified.
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The present thesis focuses on understanding the brain’s ability to represent, maintain,

and read-out information about the luminance contrast of stimuli in the world. As the fun-

damental building block for all of vision, information about light intensity passes through

a variety of important neural processing stages: from retinal responses that signal individ-

ual spots of light, through sub-cortical and cortical processing stages, where a transforma-

tion towards representing mean luminance contrast in localized parts of the visual image

is completed. Luminance contrast is arguably the most basic visual feature for pattern vi-

sion, and from it most other behaviorally-useful visual representations are derived (e.g.,

feature orientations, object boundaries, etc.). In this thesis, we present two sets of behav-

ioral experiments with human observers focused on luminance contrast processing, as well

as accompanying models based on contemporary theories of neural encoding and decoding.

Below, we first briefly review standard empirical approaches to understanding the nature

of encoding and decoding for single visual stimuli, with a focus on luminance contrast pro-

cessing. We then review key anatomical and functional characteristics of the visual system,

focusing on how the visual system represents and transforms raw sensory input into the

meaningful building blocks of vision, such as the amount of local luminance contrast or

dominating orientation in small patches of the visual image. We then extend the discussion

to more naturalistic conditions: emphasis is placed on the constraints governing behaviors

that require encoding and retention of multiple stimuli over short intervals i.e., so called

visual short-term memory (VSTM). The precision of encoding-decoding performance with

topographically-structured neural representations (e.g., orientation-tuned neural responses)

is contrasted with our current understanding of VSTM for luminance contrast. This de-

bate, and the development of encoding-decoding models of luminance contrast processing,
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forms the backbone of the thesis. On a more general note, we touch on the links between

research on sensory encoding-decoding, VSTM, and the broader literature on attentional

selection of sensory information. We conclude the introduction with a brief thesis synopsis.

1.2 Behavioral measures of stimulus encoding and decoding

Arguably the guiding pillars of modern computational approaches to understanding brain

function are the inter-twined problems of neural encoding and decoding (Dayan & Ab-

bott, 2001; Pouget et al., 2003). To maintain successful and productive behavioral reper-

toires, animals must adequately encode and make use of various sources of degraded infor-

mation about the world. The development of realistic models of such behavior requires

that researchers first characterize the everyday limits on encoding and decoding perfor-

mance, using simplified experimental methods.

1.2.1 Definition of stimulus contrast

We begin by reviewing the standard behavioral paradigms used to study the processing of

luminance contrast and other basic visual features. Stimuli in such tasks are commonly sim-

plified spatial patterns such as sinusoidal gratings or circular discs, which allow for substan-

tial experimental flexibility. Stimulus luminance contrast is typically given as a percentage

of maximum contrast, and can be defined according to more than one convention, depend-

ing on the particular stimulus set-up and the experimenter’s choice. For present purposes,

when we refer to stimulus contrast, we define it according to Michelson contrast,

cmichelson =
Lmax − Lmin

Lmax + Lmin
(1.1)
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where Lmax and Lmin represent the maximum and minimum luminances of the stimulus

respectively (e.g., the peak and trough of a sinusoidal grating). In Chapter 4, we make refer-

ence to an alternative definition (Weber contrast), which is described there.

1.2.2 Detection and discrimination of luminance contrast

Experimentalists have traditionally investigated the encoding-decoding of luminance con-

trast and other basic visual features using behavioral paradigms such as discrimination or

detection (Nachmias & Sansbury, 1974; Legge & Foley, 1980; Skottun et al., 1987; Boyn-

ton et al., 1999). In a two-interval, forced-choice (2-IFC) discrimination task, for example,

an observer is presented with a baseline or pedestal stimulus value across each of two inter-

vals, and must correctly distinguish in which of the two intervals an additional increment

(i.e., a contrast change) is added to the pedestal. Threshold performance is typically defined

as the increment magnitude necessary to achieve some fixed performance criterion (e.g.,

75% correct). A contrast-detection task is a limited form of discrimination, in which the

baseline contrast is set to background luminance (i.e., 0% contrast), and absolute detection

thresholds have commonly been collected alongside discrimination thresholds in the same

experimental runs (Nachmias & Sansbury, 1974; Bradley & Ohzawa, 1986).

A classic finding in contrast-discrimination tasks is the improvement in discrimination

performance for very low pedestal stimulus contrasts, relative to detection performance

(Figure 1.1A) (Nachmias & Sansbury, 1974; Legge & Foley, 1980; Bradley & Ohzawa, 1986).

This effect is thought to arise from an early accelerating non-linearity in contrast encod-

ing, under the assumption that regardless of stimulus contrast level, a fixed change in some

internal response (i.e., neural firing) is required for discrimination of changes to the stimu-
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lus (Nachmias & Sansbury, 1974; Legge & Foley, 1980; Bradley & Ohzawa, 1986). Follow-

ing this early facilitation effect, a gradual increase in thresholds for much of the stimulus

contrast axis is typically observed, with the slope of this increase often found to be around

0.5-0.7 on a log-log axis (Nachmias & Sansbury, 1974; Legge & Foley, 1980). Presumably,

the gradual increase in threshold with increasing pedestal stimulus contrast reflects some

trade-off between the shape of the internal response to stimuli and internal noise levels, a

debate which has continued for some time (Gorea & Sagi, 2001). In passing, however, we

note that a number of studies which have measured thresholds for very high pedestal con-

trasts (e.g., above 50% contrast) have found some late flattening or decrease in threshold,

thereby suggesting that the later part of the contrast-discrimination function is not neces-

sarily monotonic throughout (Kingdom & Whittle, 1996; Zenger-Landolt & Heeger, 2003;

Chirimuuta & Tolhurst, 2005; Pestilli et al., 2011).

1.2.3 Alternate measures of luminance contrast processing

A number of studies have also utilized a matching or adjustment protocol to study lumi-

nance contrast processing (Georgeson & Sullivan, 1975; Prinzmetal et al., 1997). For exam-

ple, Georgeson & Sullivan (1975) had observers adjust the contrast of one of two sinusoidal

gratings presented side-by-side, so as to match the other grating in contrast: for relatively

broad differences in stimulus spatial frequency, observers could accurately match the con-

trasts of the variable and standard stimuli, suggesting a substantial degree of adaptability on

the part of the local neural mechanisms feeding into stimulus contrast coding. In addition,

the effect of luminance contrast on the encoding of another important visual feature, stim-

ulus orientation, has also been studied using discrimination protocols (Blake & Holopi-
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gian, 1985; Skottun et al., 1987; Mareschal & Shapley, 2004). As stimulus contrast increases,

a characteristic decrease in thresholds for orientation discrimination is found, with typically

no substantial improvement in performance beyond stimulus contrasts of about 10-20%

(Figure 1.1B). In other words, observers appear to reach ceiling performance levels for ori-

entation discrimination at relatively low-to-moderate contrasts, with the bound on perfor-

mance likely set by fixed levels of internal noise (Mareschal & Shapley, 2004).

1.3 Neural basis of stimulus encoding and decoding

To better understand the foundation on which behaviors such as contrast discrimination

are based, we now briefly describe the architecture and function of the early visual system,

and the neural representations that act as the building blocks of cortical vision. We also

briefly discuss the known characteristics and effects of neural noise on sensory processing.

1.3.1 Architecture and function of the early visual system

Anatomical and physiological studies in numerous species illustrate common neural pro-

cessing architectures for visual information (McIlwain, 1996). The primate visual system,

for example, is known to progress along two main processing streams which differ in their

anatomical and physiological characteristics, the magnocellular and parvocellular path-

ways (Shapley, 1990; McIlwain, 1996). This pathway segregation begins in the retina, and

becomes highly evident in the layering of the major sub-cortical visual relay, the lateral

geniculate nucleus (LGN) of the thalamus. The two pathways then converge onto differ-

ent sub-layers of the primary visual cortex or V1, with magnocellular cells terminating in

layer 4Cα and with a large portion of the parvocellular pathway cells terminating in layer

6



4Cβ (McIlwain, 1996; Sincich & Horton, 2005). From here, the organization of the sepa-

rate processing streams becomes more nuanced in layout, with the parallel processing that

predominated at earlier synapses (e.g., retina to thalamus), giving way to cross-talk in cor-

tex. For example, V1 neurons receiving thalamic inputs may have subsequent synapses onto

other layers of V1, and individual cortical layers can be reciprocally connected to one an-

other (Callaway, 2003; Sincich & Horton, 2005).

Broad functional differences are apparent across these and other parallel processing

channels in the early visual system. For example, the transmission of chromatic (i.e., color-

related) information from retina to cortex is subserved primarily by parvocellular pathway

processing, while the magnocellular pathway is thought to play a more dominant role in

processing achromatic, luminance-defined signals and motion (Lennie et al., 1990; Shap-

ley, 1990; Johnson et al., 2001). In fact, cells in the respective pathways illustrate broadly

divergent sensitivity to luminance intensity and contrast, presumably playing qualitatively

distinct roles in luminance contrast processing (Kaplan & Shapley, 1986; Shapley, 1990).

In parallel, from the retinal bipolar layer onward, sensory responses are carried by cells that

become either more or less responsive when stimulated within the center of their recep-

tive field by light increments, the so-called ON/OFF channels in vision (Wiesel & Hubel,

1966; Schiller et al., 1986; McIlwain, 1996). Presumably, this early separation of responses

to increments and decrements in light evolved to allow for maximum system contrast sen-

sitivity at minimal biophysical cost (Schiller et al., 1986). Of note, numerous findings in

recent years have now definitively illustrated asymmetries in the early representation of pos-

itive and negative luminance signals (Chubb et al., 2004; Yeh et al., 2009; Ratliff et al., 2010;

Kremkow et al., 2014), a topic we will briefly touch on in later discussion.
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Figure 1.1: Discriminaধon behavior and tuning funcধons for contrast and orientaধon. A) Contrast-discriminaধon
performance for sinusoidal graধngs of increasing contrast, adapted by eye from Legge & Foley (1980). B) Typical
orientaধon-discriminaধon performance for graধng sধmuli of increasing contrast, adapted by eye from Skoħun et al.
(1987). C) Idealized (Naka-Rushton) single-neuron contrast response funcধons with logarithmically-spaced semi-
saturaধon constant. D) Idealized (Von Mises) orientaধon tuning curves ধling the orientaধon axis.

1.3.2 The building blocks of cortical vision

A series of transformations occur in early vision from representing local, absolute light in-

tensity values in neural responses, to representing luminance contrast in the scene being

viewed. The visual system achieves this through a cascade of gain control processes, where

the input drive at a given stage of processing (e.g., V1) is scaled by a broader, suppressive

(i.e., inhibitory) signal in the surrounding neural circuit (Shapley & Victor, 1979; Ohzawa

et al., 1985; Wilson, 1999; Carandini & Heeger, 2012). Gain control processes serve to opti-

mize the visual system’s response under varying input conditions (e.g., for a given time of

day or mean luminance level), by ensuring that the system is most sensitive to fluctuations

around the mean input level. In general, increases in stimulating contrast typically produce

a monotonically increasing contrast response profile, with lower contrasts producing rela-

tively fewer mean spikes, and higher contrasts eventually saturating the response of the neu-

ron (Figure 1.1C). This firing rate behavior can be captured by relatively simple mathemat-

ical expressions, such as the commonly used Naka-Rushton equation (Naka & Rushton,

1966; Albrecht & Hamilton, 1982). By describing the responses of individual neurons using
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simplified equations with minimal parameters, properties of larger groups of neurons (i.e.,

local populations) can be summarized in terms of distributions of parameter values (Al-

brecht & Hamilton, 1982). As stimulus contrast is encoded in a neuron by the strength of

its firing, we refer to luminance contrast throughout this thesis as being an intensity-coded

feature.

Unlike the intensity-coding used for luminance contrast processing, the detailed architec-

ture of the early visual system provides the ideal substrate for the structured or topographic

representation of other basic visual features. In now classic experimental work, Hubel &

Wiesel (1962) demonstrated topographic representation along several visual stimulus fea-

ture dimensions: e.g., for location (retinotopy), orientation (orientation pinwheels) and

disparity processing (ocular dominance columns). In the intervening decades, neurosci-

entists have attempted to further refine our understanding of these topographic represen-

tational maps, perhaps most successfully for orientation-tuned neural responses (Ferster,

2003). In contrast to the monotonic tuning functions found for contrast, local orientations

in an image are mapped onto approximately symmetric neural tuning functions for orienta-

tion, with individual neurons typically responding to a limited range of preferred stimulus

orientations. An idealized example of symmetric, orientation tuning curves is depicted in

Figure 1.1D.

1.3.3 Neural noise and the encoding-decoding process

Even with a detailed supporting neural architecture, performance in behavioral tasks is

never perfect: noise accrues in an observer’s representation of the visual world, from the

initial photon transduction process in retina, through to noisy neural spiking at sub-cortical
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and cortical layers of the visual system. Numerous investigators have studied characteris-

tics of neural noise in visual cortex (Tolhurst et al., 1981; Shadlen & Newsome, 1998; Goris

et al., 2014). A key finding relates to the link between the mean and variance of a neuron’s

firing rate: these have often been found to scale together with a ratio of approximately 1,

meaning that a neuron’s spiking behavior can be reasonably well-approximated as a Poisson

process (Tolhurst et al., 1981; Shadlen & Newsome, 1998). However, this relationship is cer-

tainly not exact for real neurons, and the ratio of variance-to-mean (i.e., the Fano factor) has

been found to range above and below 1 (Shadlen & Newsome, 1998; Goris et al., 2014). In

fact, an appreciation has grown recently for the importance of accounting for trial-to-trial

gain fluctuations in models of firing rate statistics (Goris et al., 2014). Fluctuations in the

strength of neural response to a given stimulus might arise from a variety of non-sensory

sources e.g., through modulations of attention or arousal. Models of encoding-decoding

performance have begun to incorporate more realistic gain fluctuations into their com-

putational architecture (May & Solomon, 2015), a topic we will touch on briefly in later

discussion.

1.4 Encoding-decoding performance under more natural conditions

The distinctions between research on basic stimulus encoding-decoding, VSTM, and atten-

tional selection are sometimes subtle. While VSTM paradigms inevitably incorporate delay

between the time of encoding and read-out, this distinction is not typically considered in

standard 2-IFC discrimination tasks, where stimuli must still be held in memory from one

interval to the next. To better link these topics, we first describe how temporal delay affects

the classic discrimination behaviors described earlier. We then flesh out our current under-
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standing of how encoding-decoding performance changes under more natural conditions,

such as in the presence of target location uncertainty (i.e., for multiple stimulus displays).

This discussion is divided into two parts: research that has investigated the effects of vary-

ing set-size on performance, and research that has investigated the effects of stimulus inter-

actions on performance. In doing so, we introduce a variety of research on VSTM, with

particular emphasis on the delayed-estimation paradigm. We also touch on the broader

topic of attentional selection of sensory information.

1.4.1 Role of temporal delay on encoding-decoding performance

The similarities and differences between perception and VSTM are immediately appar-

ent when one compares VSTM performance for luminance contrast to performance for

features such as stimulus orientation. Contrast-discrimination thresholds increase substan-

tially with response delay periods longer than a few seconds, unlike performance profiles

for stimulus properties such as orientation, motion, or spatial frequency, which are much

less affected across prolonged delays e.g., 10 s or more (Magnussen & Greenlee, 1999). These

findings likely reflect differences in how the relevant stimulus information is neurally rep-

resented (i.e., intensity vs. topographic encoding), and how these representation decay over

time. In the case of orientation, the topographically-arranged orientation maps provide

a natural substrate for precise encoding, while no analogous representation facilitates the

precise encoding of contrast.
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1.4.2 Role of set-size on encoding-decoding performance

The effect of stimulus set-size on encoding-decoding precision has been extensively stud-

ied, both for attention-related tasks such as visual search (Palmer et al., 2000; Mazyar et al.,

2012) and for studies of VSTM using paradigms such as change detection and change local-

ization (Pashler, 1988; Luck & Vogel, 1997; Bays & Husain, 2008). In earlier studies, data

were often interpreted as reflecting a bound on performance as a function of set-size, with

set-sizes greater than four thought to require more than the available number of encoding

slots in memory (Luck & Vogel, 1997; Cowan, 2001). This view has changed in recent years.

For example, visual search performance has now definitively been shown to systematically

decrease as the number of stimuli that make up the search array increases (Mazyar et al.,

2012), and similar effects hold for VSTM paradigms (Bays & Husain, 2008; Ma et al., 2014).

Researchers have recently taken a more direct approach to measuring the precision of

stimulus encoding and decoding, by utilizing the delayed estimation method (Wilken &

Ma, 2004; Fougnie et al., 2012; van den Berg et al., 2012), a paradigm inspired by earlier

matching experiments (Prinzmetal et al., 1997, 1998). In a delayed-estimation task, an ob-

server is first presented with a brief stimulus display, and after a short delay, must attempt

to match the input stimulus precisely. By systematically controlling delay time (typically

on the order of a couple of seconds), such tasks serve to focus on the processes of encoding

and maintenance of information in VSTM. For example, in a subset of their experiments,

Wilken & Ma (2004) had observers estimate the orientation, color, or spatial frequency

of a stimulus presented 1500 ms earlier. As set-size increased, estimate precision decreased

in monotonic fashion, counter to the traditional view of VSTM as being made up of slots

(Luck & Vogel, 1997; Cowan, 2001). By providing a more continuous measurement of en-
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coding quality, such tasks provide richer datasets that lend themselves more naturally to

detailed computational model-fitting.

1.4.3 Role of stimulus interactions on encoding-decoding performance

The effects of distractor stimuli on encoding-decoding precision goes beyond the basic set-

size effect. Even when an observer knows in advance that only one stimulus is relevant for

a task, there can still be an effect of irrelevant distractors on performance. Systematic in-

vestigation of such effects has so far been limited; yet, a number of recent investigations on

the topics of attentional selection and VSTM have utilized paradigms where the effects of

direct stimulus interactions on behavioral performance can be studied. Of these, a num-

ber of studies relevant to the topic of luminance contrast encoding-decoding have emerged

(Pestilli et al., 2011; Chen & Seidemann, 2012; Hara & Gardner, 2014; Itthipuripat et al.,

2014), as well as empirical and theoretical investigations studying the general effects of fea-

ture and stimulus interactions on decoding (Bays et al., 2009; Matthey et al., 2015; Orhan &

Ma, 2015).

Results of some of these studies support the view that VSTM for luminance contrast

is severely hampered by the presence of irrelevant distractors. This behavior was nicely

demonstrated in a series of contrast-discrimination experiments in which observers had

to either focus or distribute their attention across multi-item displays (Pestilli et al., 2011;

Hara & Gardner, 2014). The presence of a single high-contrast distractor was sufficient to

severely disrupt threshold performance at the target location (Pestilli et al., 2011). The large

responses evoked by high-contrast distractors must have dominated in the selection of sen-

sory signals for decision, supporting a model of encoding-decoding using something akin

13



to a max-pooling operation as a decision rule (Pelli, 1985; Palmer et al., 2000; Pestilli et al.,

2011).

Other recent findings provide a window into the question of stimulus interactions and

encoding-decoding precision. For example, using a delayed-estimation paradigm, Bays et al.

(2009) found that estimates of the color of a recently presented target item appeared to be

accompanied by a sizeable proportion of non-target color reports. The authors described a

model of this process in which memory for item color and location could interact, thereby

systematically affecting the shape of estimate response distributions for target color. This

type of effect highlights the difficulty faced by the brain in disentangling the actual sources

of sensory responses in the context of multiple stimulus displays. Presumably, as has been

found at numerous levels of visual processing, individual neurons might compute weighted

sums of constituent inputs, effectively mixing neural responses originating from separate

sources (Recanzone et al., 1997; Zoccolan et al., 2007; Busse et al., 2009). This line of think-

ing has recently been formalized in an encoding-decoding architecture based on the linear-

mixing of separate sensory neural responses (Orhan & Ma, 2015). In Chapter 3, we explore a

model of this sort.

1.5 Thesis synopsis

The present thesis consists of a complementary pair of investigations that further our un-

derstanding of the neural representations and computational rules governing the encoding

and decoding of luminance contrast. Each investigation was comprised of multiple psy-

chophysical experiments with human observers, and involved subsequent fitting of neural

computational models to each dataset. The thesis builds on a wide variety of studies that
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relate to the topics of sensory encoding and decoding.

In Chapter 2, we present results from a series of 2-IFC discrimination experiments that

directly question the principled nature of VSTM for luminance contrast: in the presence

of irrelevant distractor stimuli, contrast-discrimination performance is found to deteriorate

more substantially relative to decoding performance for another low-level, visual feature

(orientation). We investigate these differences in Chapter 3, by simultaneously fitting par-

ticular neural response models to each of the datasets described in Chapter 2. Neither of

two common models of sensory interaction (i.e., divisive normalization, linear mixing of

neural responses) provides a satisfactory explanation of both datasets simultaneously; we

discuss possible reasons for the failure of these models to account for performance. We then

dig deeper in Chapter 4, studying the trial-by-trial precision of VSTM for luminance con-

trast. Results are presented from a series of delayed-estimation experiments, allowing us

to more clearly define the likely neural constraints governing the encoding and short-term

retention of luminance contrast information. Behavior of human observers on these tasks

is shown to be highly principled: performance is captured satisfactorily by a probabilistic

model of neural responses incorporating biologically-plausible model components.
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2
Efficient and inefficient selection from the

same sensory neural response:
psychophysics

2.1 Introduction

To successfully perform even basic visual tasks, humans must efficiently select

and manipulate relevant environmental information. The brain processes this sensory in-

formation in various stages, from initial encoding, to the maintenance of signals in visual

short-term memory, to the application of appropriate sensory read-out rules. A long tra-
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dition of research in sensory neuroscience has studied such processing using very simple

stimuli and tasks, allowing for maximal experimental control and model tractability. For ex-

ample, human visual performance has been commonly characterized by studying how ob-

servers discriminate the contrasts (Nachmias & Sansbury, 1974; Legge & Foley, 1980; Boyn-

ton et al., 1999) or orientations (Westheimer et al., 1976; Blake & Holopigian, 1985; Skottun

et al., 1987) of two successively presented sinusoidal gratings, so-called two-interval, forced-

choice (2-IFC) discrimination tasks. Performance or threshold on such tasks is typically de-

fined as the amount of stimulus change needed to achieve a criterion level of behavioral per-

formance (e.g., 75% correct). When plotted as a function of the pedestal stimulus contrast,

contrast-discrimination thresholds typically follow a ‘dipper’ shape, first decreasing with

small increases in pedestal contrast above background luminance, and then increasing at

higher values of pedestal contrast (Nachmias & Sansbury, 1974; Legge & Foley, 1980). On

the other hand, as pedestal contrast increases, the deviations in pattern orientation neces-

sary to reach a threshold level of orientation-discrimination performance typically decrease

in a systematic and monotonic fashion (Skottun et al., 1987).

Single-stimulus tasks afford the researcher precise experimental control and simplicity,

yet such paradigms are entirely unlike natural vision, in which multiple objects are present

at once. In fact, despite substantial progress in understanding how discrimination behav-

ior is linked to local neural computations (Paradiso, 1988; Boynton et al., 1999; Sanborn &

Dayan, 2011; Berens et al., 2012), relatively little is known about the selection or decoding

strategies implemented by observers when faced with more complex sensory input (i.e.,

multiple possible target stimuli). Thus, there is a need to develop experimental paradigms

where the joint encoding of multiple stimuli is required for successful performance. We
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focus here on the role of irrelevant distractors in multiple stimulus encoding; specifically,

on tasks in which the observer attempts to select from memory information from a single,

post-cued stimulus location (Pestilli et al., 2011; Sergent et al., 2011; Hara & Gardner, 2014;

Itthipuripat et al., 2014). We do not consider tasks in which all items are actually relevant

for the task, such as global target detection (Palmer et al., 2000; Ma et al., 2011).

How do irrelevant distractors influence behavioral performance in traditional discrim-

ination tasks? While direct evidence is so far weak, there are hints that discrimination per-

formance with more complex sensory input varies as a function of the particular task and

encoding constraints under investigation. For example, unlike the known topographic neu-

ral representation for stimulus features such as orientation, the neural representation for

contrast is based fundamentally around response intensity (Albrecht & Hamilton, 1982),

a characteristic that likely hinders the formation of abstract memory representations for

contrast (Xing et al., 2014). Thus, sensory evidence for a particular contrast may be avail-

able only briefly after stimulus disappearance, and in imprecise form, encouraging non-

selective pooling across stimuli when multiple estimates are made simultaneously (Pestilli

et al., 2011; Hara & Gardner, 2014). For example, Pestilli et al. (2011) found that when atten-

tion was distributed across multiple stimuli that varied in contrast, the presence of a single

high-contrast distractor was sufficient to severely disrupt contrast-discrimination perfor-

mance at a target location. However, sensory evidence for other stimulus properties (e.g.,

orientation) may be maintained with greater precision and for longer post-stimulus delays

(Magnussen & Greenlee, 1999). Thus, when selecting from sensory signals at different spa-

tial locations, performance on tasks such as orientation discrimination may be much less

influenced by distractors or prone to sub-optimal decision rules, a conjecture with some
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experimental support (Sergent et al., 2011).

To test this possibility, we ran separate experiments in which observers discriminated

changes to either the contrast or orientation of a target stimulus presented in the hemifield

opposite to a distractor. Identical stimulus protocols were used across experiments, the only

difference being that small contrast increments were added to the target location in the con-

trast experiment, while small orientation deviations were added to the target in the orienta-

tion experiment (Figure 2.1). To measure the effect of distractor strength on performance,

we systematically varied the pedestal contrasts assigned to targets and distractors. Results re-

inforced the view that for the two forms of discrimination tested, observers appear to select

from identical sensory neural responses in incommensurate ways. In a subsequent chapter,

we will attempt to fit these data using a precise neural computational model.

2.2 Materials and Methods

2.2.1 Participants

Data from the same eight observers (two authors) were collected in both of the main ex-

periments. Five observers completed the contrast-discrimination experiment prior to the

orientation-discrimination experiment, three observers ran in reverse order. Experimen-

tal sessions were typically performed over a 1-3 week period, with the different experiments

separated by up to several months. Observers were recruited from the general student/staff

body at New York University (paid $10/hr) and amongst lab colleagues, and had varying

degrees of experience in psychophysical testing. One additional recruit was not tested be-

yond the practice session, during which this individual confirmed being diagnosed with

an attention-related disorder. Aside from the authors, observers had no knowledge of the
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specific experimental hypotheses. All observers gave written informed consent, and exper-

iments were carried out with approval of the NYU University Committee on Activities

Involving Human Subjects.

2.2.2 Contrast discrimination

Task

We tested the effects of distractors of different contrast on contrast-discrimination perfor-

mance at a post-cued target location (Figure 2.1). Each trial began with the presentation of

pre-stimulus arrows pointing left and right of fixation (1 s), cueing the observer to distribute

attention equally to two peripheral locations (6◦ eccentricity), while remaining fixated on a

central fixation cross (1◦ width). After a short delay (100 ms) and auditory tone indicating

stimulus onset, a pair of gratings were briefly presented in a first stimulus interval (600 ms),

one positioned left and the other right of fixation along the horizontal meridian. The grat-

ings then disappeared, and after a short ISI (200 ms), the gratings reappeared for a second

stimulus interval (600 ms). A positive contrast increment was added to one of the gratings

(the ‘target’) in one of the two intervals. After the stimuli had left the screen, there was a

second short delay (400 ms), followed by presentation of a green arrow indicating the tar-

get location. Observers responded during this interval by pressing one of two keys on the

keyboard (‘1’ or ‘2’), judging which of the two stimulus intervals contained a higher con-

trast at the target location. This response interval was of fixed duration (1200 ms), and trials

with no response were not replaced. Observers received feedback on each trial (color change

of the fixation cross and auditory tone), and were instructed to perform as accurately as

possible throughout sessions. Trials were separated by an ITI of pseudo-random duration
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A Contrast discrimination

B Orientation discrimination

1. Blank 1.1s 2. Stim1 0.6s 3. ISI 0.2s 4. Stim2 0.6s 5. Blank 0.4s 6. Resp 1.2s

Figure 2.1: Sensory discriminaধon in the presence of distractors: experiments. Contrast- and orientaধon-
discriminaধon experiments were carried out in separate sessions (i.e., non-interleaved), using a largely idenধcal set-
up. Trials began with the presentaধon of pre-cues poinধng leđ and right of fixaধon, cueing the observer to distribute
aħenধon equally to two peripheral locaধons (6◦ eccentricity). A pair of graধngs (5◦ diameter) were then briefly pre-
sented in the first sধmulus interval, leđ and right of fixaধon. The graধngs then disappeared, and ađer a short ISI,
reappeared for a second interval. In the contrast-discriminaধon experiment, a posiধve contrast increment was added
to a target graধng in one of the two intervals; in the orientaধon-discriminaধon experiment, a clockwise or counter-
clockwise orientaধon increment was added to the target graধng. Ađer the sধmuli had leđ the screen, a post-cue
(green arrow) indicated the target locaধon. Observers judged in which of the two intervals the target graধng had
either higher contrast or was rotated more clockwise.

(800-1200 ms, 100 ms steps). Observers completed five sessions (480 trials per session, ap-

proximately 1 hr duration). We regarded the first session as a practice session and analyzed

only the final four sessions. Observers received a mandatory rest period after every block of

120 trials, and could also pause presentation at any time by pressing the space bar.

Stimulus design and experimental conditions

Stimuli were presented in a darkened room on a gamma-corrected CRT (75 Hz, 1152 x

870 resolution), and were generated using MATLAB (The Mathworks) and MGL (see

www.justingardner.net/mgl). For the first phase of experiments, we used a gamma correc-

tion table calculated some time prior to testing (approximately 24 months earlier); a later

correction carried out prior to the control experiment suggested that drift had occurred
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from the original table values. However, mean and maximum luminances always lay in

typical ranges for these types of experiments (approximately 35 and 70 cd/m2 respectively,

plus or minus a small amount). We are not concerned that this drift had any meaningful

consequences for our stimulus comparisons, given that we used a relatively coarse sampling

of contrasts from the entire luminance contrast range. Gratings were counter-phase flick-

ering sinusoids (5 Hz, 2 cycles/◦) measuring 5◦ in diameter. Gratings were presented in-

side black circular frames, such that a small gap lay between the frame and the grating edge

(raised-cosine, edge width 0.5◦). Target and distractor gratings could appear with one of

four pedestal contrast values (10, 20, 40 or 80% Michelson contrast). An experimental con-

dition is defined as a combination of target and distractor contrast. All combinations of

target and distractor contrast were presented, excluding those conditions where target and

distractor would appear with identical pedestal contrast. The reason for this exclusion was

that in such conditions, an ideal observer could use information from a single interval to

perform the task, as positive contrast increments were always added to the target pedestal.

Thus, we measured contrast-discrimination thresholds for twelve target-distractor contrast

pairs in total.

Forty trials per condition were presented in each session, and conditions were randomly

interleaved. Of the forty trials per condition, increments on thirty-two trials were con-

trolled by an adaptive, 1-up-2-down staircase (i.e., the increment was increased after an in-

correct response, and decreased after two consecutive correct responses). Increments on the

remaining trials were hand-picked on a session-by-session basis. For the hand-picked in-

crement trials, which were randomly interleaved with staircase trials, increments were typi-

cally set to low and/or high values so as to improve the quality of fit to baseline/asymptotic
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performance across session (occasionally some intermediate fixed increments were also pre-

sented). In all conditions except for 40% and 80% pedestal contrasts, we used contrast in-

crements of 0.5, 1, 2, 4, 8, 12, 16, 24, 32, 48 and 64%. When pedestal contrast was 40% or

80%, we modified the increment array such that contrast would not exceed 100% (e.g., for

an 80% contrast target, the largest possible increment was 20%). In a couple of early ses-

sions, we included increments of 6, 10, 20 and 40% in the general array; we retained any

trials using these increments for analysis, except for a small handful (eight trials for one ob-

server) in which target-plus-increment inadvertently equaled distractor contrast. Staircase

endpoints from the practice session were used as staircase starting points in the first test ses-

sion, and similarly each subsequent test session began with staircase endpoints from the

session prior. In anticipation of the orientation-discrimination experiment, target and dis-

tractor gratings took one of ten pseudo-random orientations (9, 27, 45, 63, 81, 99, 117, 135,

153 or 171◦). For each of the twelve conditions present within a 120-trial block, each of the

ten possible orientations was used as target orientation exactly once. The frequency of dis-

tractor orientations was not controlled in a similar fashion, but pseudo-randomized such

that distractor orientation always differed from target orientation on any given trial. On

any trial, orientations were held constant across intervals.

2.2.3 Orientation discrimination

Task, stimulus design and experimental conditions

Aside from a separate training phase (see below) and the increment type (i.e., orientation),

all aspects of stimulus presentation and protocol were largely identical to the contrast-

discrimination experiment. On each trial, a clockwise or counter-clockwise orientation in-
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crement was added to the target grating, and observers judged which interval contained the

more clockwise-oriented stimulus at the target location, which was post-cued as in the con-

trast task. In addition, all sixteen combinations of target-distractor contrast were presented

(all combinations of 10, 20, 40 and 80% contrast). Given the larger number of conditions,

observers completed six 480-trial sessions, with thresholds estimated from the final five

sessions. Each session was divided into three 160-trial blocks, and given the slightly longer

blocks, observers were encouraged to pause presentation once or twice per block as needed.

In each session, thirty trials were presented for each of the sixteen target-distractor contrast

conditions. The staircase approach was similar to that used for the contrast-discrimination

experiment, with a fixed array of orientation increments provided for each staircase (incre-

ments of 1, 2, 4, 6, 8, 12, 16 and 24◦), and with a small proportion of trials set to increments

which were hand-picked from the fixed array on a session-by-session basis.

Training protocol

Our training protocol was informed by an initial version of the orientation-discrimination

experiment which included 32◦ orientation increments, and in which two observers com-

pleted several sessions each (a practice session plus two/three test sessions, respectively).

For both observers, we found that performance in a large number of conditions was near

chance even for the 32◦ increments. This may have resulted from several factors, including

the large range of pedestal orientations used (spanning 180◦), the time-limited response in-

terval, and the direction ambiguity inherent in circular orientation space (which might be

particularly problematic for very large orientation increments).

We excluded the data from these early sessions from further analysis and in response to
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the noted problem, made several modifications to the experimental design. First, we lim-

ited the orientation increments in the main experiment to a maximum of 24◦. Second, we

introduced a training protocol with fixed, large orientation increments (24◦) only. Dur-

ing training, observers were verbally encouraged to focus on the global, rotational nature

of the discrimination (as opposed to focusing on the left/right tilt of one end of the grat-

ing), and were instructed that the large orientation increments presented in training were

the largest possible orientation changes they would experience throughout testing; feed-

back from several observers confirmed that the large increments were typically well above

detection threshold. In an effort to step up the difficulty level of training blocks gradually,

we used three different block types that differed in complexity: the first involved orienta-

tion discrimination for a single grating presented over two intervals; the second used two-

grating displays, and involved orientation discrimination for a pre-cued target grating; the

third used two-grating displays but without target pre-cueing, as in the main experiment.

Blocks consisted of forty trials each. For the single-grating blocks, stimuli were presented at

fixation and each of the four test contrasts were presented an equal number of times, in ran-

domly interleaved fashion. For the two-grating blocks, we used pseudo-randomly selected

subsets of the contrast conditions from the main experiment. Specifically, we ensured in

each block that each of the four contrasts appeared once as target and once as distractor,

and that conditions were matched in opposite pairs so that the target could not be distin-

guished based on contrast. Observers were informed of their percentage correct after each

block, and moved from one block type to the next when they scored consistently in the

range of 80-90% and above (this was judged online by the experimenter on an observer-by-

observer basis, as observers differed noticeably in the consistency with which they could
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score above 90% for these relatively simplified blocks). In total, the different observers com-

pleted from one to three training sessions of approximately 1 hr each. In a final modifica-

tion of the original protocol, observers also completed one or more short warm-up blocks

at the beginning of each test session. Again, the exact number of blocks was determined

online by the experimenter, based on a rough appraisal of the consistency of the observer’s

performance relative to the pre-test training sessions.

2.2.4 Threshold estimation and statistical tests

Main analyses

We estimated thresholds separately for each observer in each experiment. For a given experi-

ment, we combined data from the final four (contrast) or five (orientation) sessions, so that

we had a maximum of 160 (contrast) or 150 (orientation) trials per condition from which

to estimate threshold. Trials on which no response was made were excluded from analysis

(less than 1% of trials), meaning that the actual numbers of trials per condition were on av-

erage slightly less than the numbers above. We fit a Weibull function to the data from each

condition,

Proportion correct(Δs) = 0.5 +
(
0.5 − plapse

)(
1 − exp

(
−(

Δs
a )b

))
, (2.1)

where Δs is the orientation or contrast increment, 1 − plapse is the asymptotic proportion

correct at very large increments, and the parameters a and b control the midpoint (i.e., bias)

and steepness (i.e., slope) of the psychometric function, respectively. To impose the con-

straint of a fixed lapse rate across conditions, we adopted the following fitting procedure.
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We varied plapse in steps of 0.001 between 0.001 to 0.06. At each step, we used maximum-

likelihood estimation, implemented using the MATLAB function fminsearch.m, to find

the best-fitting a and b independently for each condition. The log likelihoods of the result-

ing fits to the individual conditions were then summed, to give a combined log likelihood

value for each lapse rate. The plapse with the highest log likelihood, and the associated col-

lection of bias and slope value pairs, were taken as the best-fitting parameter values for an

individual observer. We then derived thresholds from the fitted psychometric functions by

finding the increment necessary to achieve 75% correct performance (Figure 2.2A). A small

number of occurrences of threshold going outside increment boundaries were left as is (e.g.,

contrast-discrimination threshold exceeding 20% for 80% contrast targets); they played no

meaningful role in comparisons of most interest.

To measure the probability of observing mean threshold differences by chance for differ-

ent distractor contrast levels, the following statistical test was run. Using a randomization

analysis, we calculated p-values for each possible distractor pair comparison, separately at

each target contrast value. For each comparison, this involved pooling the pair of distrac-

tor response distributions for an observer, and re-sampling trials for the two conditions

from the randomly shuffled pooled distribution. Psychometric functions were fit to the

re-sampled pair, and threshold difference computed (with plapse held fixed at the value calcu-

lated in the main analysis). This sampling procedure was repeated 10,000 times to generate

a distribution of threshold differences for each pair. The same process was applied to each

observer’s data separately, such that for each comparison we had eight observers x 10,000

threshold differences. From these, we calculated a mean distribution for each comparison

(averaging across the observers’ unsorted distributions at each sample). The resulting mean

27



distribution was sorted from smallest to largest, and the probability of observing by chance

the measured mean threshold difference was read off from this sorted distribution (by find-

ing the index with minimum absolute difference from the measured mean threshold differ-

ence, ignoring the sign of that minimum difference). Exact p-values are reported in text and

in Table 2.1 (to four decimal places, and with a minimum possible value of p = 0.0001).

Control analyses

As a precautionary measure, we repeated the main analyses with two modifications. First,

we re-ran the randomization analysis after excluding trials containing saccades during the

stimulus intervals (see Eye-movement recording). Second, to account for the possibil-

ity that some fits might have been over or under-dispersed due to, for example, across-

session learning or experimenter bias in handpicking increment values, we re-calculated

the p-values after performing a deviance analysis on the psychometric function fits (Wich-

mann & Hill, 2001). Specifically, the deviance statistic was computed for each psychometric

function fit, and then compared to a distribution of simulated deviance statistics (10,000

samples). This distribution was computed using the original fit parameters as generating

model, and calculating deviance at each sample between the simulated data and the best-fit

psychometric function to the simulated data. Individual fits whose deviance statistic lay

outside a relatively narrow confidence interval (84%) were excluded from p-value calcula-

tion.

We also carried out two additional control analyses on sub-portions of the data. First, we

determined whether the increased exposure observers had from pre-training on the orien-

tation task dampened distractor effects in subsequent test sessions, relative to the size of ef-
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fects observed in the contrast-discrimination task at least. To test this possibility, we pooled

individual observer data from the first two test sessions of the orientation-discrimination

task (excluding the practice run), to create a super-observer dataset from which we esti-

mated thresholds. We created a similar pooled dataset from the contrast-discrimination

experiment, this time combining data from the final two test sessions, so that our compar-

ison was between sessions in which observers had approximately as much or more prior

exposure in the contrast-discrimination task. A randomization analysis was performed on

psychometric function fits to the pooled datasets.

In a final control analysis, we determined whether the difference in orientation between

target and distractor stimuli played any role in performance in either experiment (e.g.,

through grouping of similar orientations, or other spatially broad interactions). To test this

possibility, we divided the datasets into two parts - in one part, we placed trials in which the

distractor was oriented either 18◦ or 36◦ clockwise or counter-clockwise of the target (i.e.,

closer to parallel); in the other, we placed trials in which the distractor was oriented 54◦, 72◦

or 90◦ away from the target (i.e., closer to orthogonal). It was our hunch that such effects,

if they existed, would likely be small in size, so we pooled data across observers to emphasize

mean differences. For a given experiment, we then compared matched conditions across the

two portions of data using randomization, to ascertain whether the degree of similarity in

stimulus orientations had any obvious effects on performance.

2.2.5 Eye-movement recording

In each session, eye position (right eye, 500 Hz) was recorded using an Eyelink 1000 (SR

Research) and analyzed offline using custom MATLAB routines. Before each block, a cali-
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bration routine (5-pt or 9-pt) was run. Trial onset was controlled in a gaze-contingent man-

ner, beginning only after fixation was maintained within 2◦ or 2.5◦ of the fixation cross for

250 ms (anecdotal evidence suggested that drift was not uncommon towards the end of a

block, hence we used a relatively large cut-off radius to limit unnecessary trial disruption).

As our experiments involved relatively long duration trials and blocks, most observers sys-

tematically blinked during response and inter-trial intervals to limit eye fatigue. To focus

our analysis on intervals of interest, we analyzed only position data from the onset of the

first stimulus pair until disappearance of the second pair (1.4 s total). The trial-by-trial sac-

cade detection proceeded as follows, closely following default Eyelink criteria and other

well-accepted conventions (Engbert & Kliegl, 2003): from trial onset to first stimulus onset,

we calculated the median horizontal and vertical eye position; these values were subtracted

from the position data within the analysis window, so as to limit the effect of recording

drift across individual blocks. Velocity along the horizontal and vertical axes was calculated

by applying a sliding 5-pt window to the position data, and Euclidean velocity was then

calculated. Euclidean acceleration was calculated in a similar fashion. To avoid contami-

nating the saccade detection analysis with blinks, samples that corresponded to blinks (and

100 ms either side) were removed, by searching for intervals where pupil size data was not

recorded. Saccades were detected by searching for samples where velocity exceeded 30◦/s,

peak acceleration exceeded 8000◦/s2, and amplitude (i.e., Euclidean distance from rising

above to falling below 30◦/s) exceeded 0.5◦. We repeated the randomization analyses of the

main experiments after excluding trials containing saccades during the analysis window (the

percentage of which ranged from approximately 1% to 12.5% of total trials in different ob-

servers, using this relatively small saccadic cut-off). Eye data from a small number of blocks
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(four out of several hundred) was accidentally overwritten during the course of running

experiments.

2.2.6 Control experiment

In a control experiment, we replicated the main contrast-discrimination experiment, this

time providing separate response button pairs for each hand (four-button task). Data were

collected from an overlapping group of eight observers (two authors), with one additional

recruit withdrawing after completing the practice and first test session of the task. Partic-

ipants were instructed to discriminate in which interval the target grating had higher con-

trast, this time using the response keys on the side in which the target appeared (indicated

by the post-cue) e.g., pressing the nearer of the two buttons (‘v’ or ‘n’) for interval 1, or the

further of the two buttons (‘f’ or ‘j’) for interval 2. This allowed us to estimate thresholds

using only trials on which the observer explicitly indicated having responded towards per-

ceived changes at the target location (note that non-target responses were considered incor-

rect responses, and still modified the staircase position). This procedure also allowed us to

estimate the relative frequency of non-target responses across different conditions.

2.3 Results

2.3.1 Sensory discrimination in the presence of distractors

Performance across experiment differed in terms of its distractor-dependence, as illustrated

by the mean thresholds across observer (Figure 2.2B and C). Mean contrast-discrimination

thresholds were estimated to be around 10% contrast for the low and intermediate (10, 20,

and 40%) distractor contrast conditions, but were approximately doubled for targets paired
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Figure 2.2: Sensory discriminaধon in the presence of distractors: data. A) Example psychometric funcধon, and de-
picধon of threshold esধmaধon procedure. B) Mean contrast- and C) orientaধon-discriminaধon thresholds across ob-
servers (n = 8). Individual curves represent threshold as a funcধon of target contrast, ploħed separately for each dis-
tractor contrast level. The same eight observers completed both experiments. Bars represent standard error across
observers.

with the highest contrast distractor (Figure 2.2B). This increase in threshold was not re-

stricted to the lowest contrast target (10%), also occurring for targets of 20% and 40% con-

trast. Note that we avoided target contrast values in the very low range, where monotonic

increase of threshold is typically most evident, and that the relatively high baseline thresh-

olds observed in this divided attention task are not at odds with previous findings (Pestilli

et al., 2011). For orientation discrimination, thresholds were lower overall with higher target

contrast (Figure 2.2C), albeit with higher baseline threshold than one would obtain under

conditions without target location uncertainty (Skottun et al., 1987). Distractor contrast

had comparatively weaker effects on orientation discrimination: while mean thresholds in-

creased with each increase in distractor contrast, these effects were more graded in fashion,

with no indication of a large threshold jump from 40% to 80% contrast distractor condi-

tions.

These general conclusions were backed up by statistical test. At each target contrast

level within each experiment, we performed pair-wise randomization tests via bootstrap-

32



ping, to estimate the probabilities of observing distractor-mediated differences in thresh-

old by chance (Table 2.1). This pair-wise analysis illustrated comparatively greater distrac-

tor influence in the contrast experiment. For 10% contrast targets, for example, contrast-

discrimination thresholds were much more affected by 80% compared to 40% (p = 0.0001)

or 20% contrast distractors (p = 0.0001), while the probabilities of observing such differ-

ences for orientation-discrimination thresholds were comparatively weaker (80% vs 40%:

p = 0.1206; 80% vs 20%: p = 0.0016; 80% vs 10%: p = 0.0001). Similarly for 20% con-

trast targets, contrast-discrimination thresholds were again much more strongly affected by

80% compared to 40% (p = 0.0001) or 10% contrast distractors (p = 0.0001), while the

probabilities of observing such differences for orientation-discrimination thresholds were

comparatively weaker (80% vs 40%: p = 0.2373; 80% vs 20%: p = 0.0471; 80% vs 10%: p =

0.0024).

To rule out a variety of extraneous factors as possible explanations of the data, we ran

several control randomization analyses. First, for both datasets we re-calculated thresholds

after removing trials containing saccades of 0.5◦ amplitude or greater (see Materials and

Methods and Figure 2.3A). These accounted for approximately 1% to 12.5% of total trials in

different observers, using this relatively small saccadic cut-off. The overall pattern of results

across experiment was unchanged (e.g., for 10% contrast targets, probabilities of difference

for 80% vs 40% distractors were: p = 0.0001 for contrast discrimination and p = 0.3153 for

orientation discrimination; for 20% contrast targets, the probabilities were: p = 0.0001 and

p = 0.2545 respectively). Thus, eye movements during the stimulus intervals are unlikely to

explain the differences observed across experiments. In addition, we also re-calculated the

main randomization p-values after excluding data whose psychometric function fit failed to
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Distractor pair
10% vs 20% 10% vs 40% 10% vs 80% 20% vs 40% 20% vs 80% 40% vs 80%

Contrast discrimination
Target
10% - - - .0106 .0001 .0001
20% - .0288 .0001 - - .0001
40% .9712 - .0039 - .0001 -
80% .4060 .4654 - .6264 - -

Orientation discrimination
Target
10% .0771 .0031 .0001 .0584 .0016 .1206
20% .0390 .0129 .0024 .1954 .0471 .2373
40% .1243 .0283 .0147 .2616 .1709 .3595
80% .5446 .0071 .1449 .0061 .1290 .9656

Table 2.1: The table presents randomizaধon analyses on threshold differences as a funcধon of distractor pair. P-
values for each condiধon were read off from bootstrapped distribuধons with 10,000 samples each (see Materials and
Methods). Smaller p-values indicate larger thresholds for the higher contrast distractor condiধon.

pass a two-tailed deviance analysis measuring goodness-of-fit (see Materials and Methods).

The overall pattern of results was again similar (e.g., for 10% contrast targets, probabilities

of difference for 80% vs 40% distractors were: p = 0.0024 for contrast discrimination and

p = 0.0263 for orientation discrimination; for 20% contrast targets, the probabilities were:

p = 0.0001 and p = 0.1972 respectively). Thus, factors such as observer fatigue, across-

session learning, or experimenter bias in hand-picking increment values are unlikely to have

played any causal role in the observed differences across experiment.

Finally, we also carried out two additional analyses on data pooled across observers (see

Materials and Methods). First, we verified that the increased exposure observers had on

the orientation-discrimination task (due to a pre-experimental training protocol) played
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no obvious role in our observed experimental differences, by comparing subsets of the

data for which observers had as much or more exposure to the contrast-discrimination

task relative to the orientation-discrimination task. Effect sizes were comparable to results

of our main analyses (e.g., for 10% contrast targets, probabilities of difference for 80% vs

40% distractors were: p = 0.0001 for contrast discrimination and p = 0.0582 for orienta-

tion discrimination; for 20% contrast targets, the probabilities were: p = 0.0002 and p =

0.6315 respectively). Second, we verified whether distractor orientation played any role in

the measured threshold behaviors. To do this, we split the datasets into two parts, trials in

which target and distractor had closer to parallel orientations, and trials in which stimuli

were closer to orthogonal. We then re-calculated thresholds for each set of trials separately,

and computed the relevant threshold differences (thresholds for orthogonal trials minus

thresholds for parallel trials, computed separately for each target-distractor condition). The

resulting threshold differences were generally small for both tasks, as reflected in a random-

ization analysis; yet, there did appear to be a consistent orientation similarity effect in the

orientation-discrimination task, with thresholds for closer to parallel trials smaller on aver-

age than thresholds for the orthogonal pair trials, and with most benefit at lower contrast

targets (Figure 2.3B).

2.3.2 Control experiment

Results from the main experiments support the notion of sub-optimal response pooling

in contrast-discrimination tasks with target location uncertainty, in agreement with at least

one prior finding (Pestilli et al., 2011). Yet, our experiments cannot rule out the possibility

that observers may have responded on some sizeable fraction of trials to perceived contrast
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Figure 2.3: Sensory discriminaধon in the presence of distractors: control analyses. A) Main sequence data from the
contrast-discriminaধon experiment (pooled data). Thresholds were re-computed ađer removing saccade trials (see
main text for details of randomizaধon analyses). B) Threshold difference between trials with orthogonal vs. parallel
orientaধon pairs. Thresholds were calculated from pooled observer data (see Materials and Methods). Posiধve values
indicate larger thresholds for trials in which the orientaধon pairs were closer to orthogonal. At each target contrast,
mean and s.e.m. are calculated across the three (contrast) or four (orientaধon) levels of distractor contrast. C) We
replicated the main contrast-discriminaধon experiment, this ধme providing observers with two response buħons for
each hand, and instrucধng them to respond with the target-sided hand only. Mean thresholds (n = 8) from target re-
sponse trials only are illustrated. D) Proporধon of non-target responses as a funcধon of distractor contrast, averaged
over target contrasts and s.e.m. taken across observers.

changes at the distractor location; alternatively, observers may have adopted some explicit

strategy whereby they attempted to represent the average contrast of both items in a given

interval, and then respond to the interval with the higher average contrast. In an attempt to

better understand the strategy employed by observers in the contrast-discrimination task,

we replicated our experimental design with a new group of observers, this time providing

observers with separate response button pairs for each hand, and instructing them to re-

spond using the target-sided hand only. This allowed us to estimate thresholds using only

trials on which the observer explicitly indicated having responded towards the target loca-

tion. In addition, it allowed us to estimate the relative frequency of non-target responses

across the different conditions.

Data are illustrated in Figure 2.3C and D. Observers performed the task successfully, re-

sponding using the target-sided response keys for the vast majority of trials. Thresholds

estimated from the target-sided responses were highly distractor-dependent, replicating the
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general shape of the data from the main contrast-discrimination experiment (Figure 2.3C).

A randomization analysis confirmed that effect sizes were comparable to the earlier results

(e.g., for 10% and 20% contrast targets, the probability of difference for 80% vs 40% distrac-

tors was in both cases: p = 0.0001). Nevertheless, there did appear to be a weak tendency

on average for more non-target responses in higher-contrast distractor conditions, suggest-

ing some small amount of above-threshold driving of responses by the distractor (Figure

2.3D). Overall, however, results of the control experiment suggested that responses driven

by the non-target stimulus location likely played no substantial role in the high-contrast

distractor effect. It is worth pointing out, however, that this control experiment might have

undersampled the true proportion of trials on which decision was influenced by perceived

changes at the distractor location. That is, the instructions explicitly emphasized for ob-

servers to give target-sided responses; thus, occasionally observers may have given target-

sided responses despite decision being driven by perceived changes at the distractor loca-

tion. Such target-distractor interactions, however, would presumably be very difficult to

disentangle, either experimentally or conceptually, from the notion of sensory pooling.

2.4 Conclusion

We investigated how observers select sensory information in performing contrast and orien-

tation discriminations, by measuring the effects of high-contrast distractors (i.e., large sen-

sory responses) on behavioral performance in these tasks. Prior work had shown that when

selecting from multiple stimuli that vary in contrast, distractors that evoke large sensory

responses severely impact contrast-discrimination performance (i.e., lead to larger thresh-

olds), supporting a model of sensory selection in which sensory responses are sub-optimally
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pooled across space (Pestilli et al., 2011; Chen & Seidemann, 2012; Hara & Gardner, 2014).

We observed large increases of contrast-discrimination thresholds when targets appeared in

the presence of a single high-contrast distractor placed in the opposite hemifield. For orien-

tation discrimination, however, high-contrast distractors had relatively moderate effects on

performance at a target location, disrupting thresholds in a weaker, graded fashion.

What factors underlie the seemingly incommensurate behavior we observed in the sepa-

rate experiments? In either task, an ideal observer would retain an estimate of the relevant

stimulus property from both stimulus locations during interval one, repeat this process for

interval two, and compare the difference in estimates across interval. Yet, fundamental dif-

ferences in how estimates of contrast and orientation are encoded and maintained over time

likely give rise to the profiles of threshold behavior we observed. For example, contrast-

discrimination performance with single apertures is known to fall off rapidly with response

delay periods of only a few seconds, while orientation discrimination is little affected for

delays of 10s or more (Lee & Harris, 1996; Magnussen & Greenlee, 1999). Having to retain

estimates of multiple contrasts simultaneously, as in the present task, would presumably

burden visual short-term memory to a greater extent, perhaps leading to noisier estimates

or poorer separation of individual estimates in memory.

In fact, when we consider the present results alongside several other recent findings

(Pestilli et al., 2011; Sergent et al., 2011; Xing et al., 2014), it is difficult to escape the follow-

ing conclusion: observers appear ill-equipped to represent and store more than a single

contrast estimate at a time (Pestilli et al., 2011; Xing et al., 2014); yet, multiple orientation

estimates at a time can be easily stored and inspected from memory (Sergent et al., 2011).

Such striking differences in short-term memory performance are presumably underpinned
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by more fundamental encoding or VSTM differences for the two types of sensory informa-

tion (Xing et al., 2014). In the following chapter, we will fit a neural population model to

the data from these experiments, in an effort to better understand the likely source of the

differences.

In conclusion, we investigated the task-dependent nature of sensory selection, by test-

ing the effects of large sensory responses on observer performance in two standard visual-

discrimination tasks. It is well accepted that individual neurons involved in decision-making

likely receive inputs from sensory neurons with widespread retinotopic locations and fea-

ture selectivities. In line with recent experimental findings (Pestilli et al., 2011; Chen & Sei-

demann, 2012), we found evidence that selection during contrast discrimination is severely

disrupted by the presence of large sensory responses elsewhere in the visual field. In judg-

ing orientation changes, however, observers appeared to encode and maintain the relevant

information more precisely in visual short-term memory, with high-contrast distractors

having comparatively weaker effects on decision.
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3
Efficient and inefficient selection from the

same sensory neural response:
computational model

3.1 Introduction

Disentangling the roles of sensory, memory and decision-related factors on psy-

chophysical performance is an inherently convoluted exercise, requiring tightly controlled

experiments alongside equally well-formulated models. Key insights on the nature of stim-

ulus encoding and decoding have been gained, for example, by fitting precise neural com-
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putational models to data from sensory discrimination tasks (Chirimuuta & Tolhurst,

2005; Seriès et al., 2009; May & Solomon, 2015). As a metric of discrimination behavior,

neural population model approaches have often utilized the concept of Fisher information

(FI), a measure of the best possible decoding performance obtainable for an unbiased esti-

mator of an encoded stimulus value (Paradiso, 1988; Seung & Sompolinsky, 1993; Dayan &

Abbott, 2001). By providing a precise bound on the decoding accuracy possible for a given

encoding architecture, FI-based models have shed light on key factors limiting decoding

performance in sensory discrimination tasks, such as neural adaptation (Seriès et al., 2009),

noise correlations (Averbeck & Lee, 2006; Ecker et al., 2011) and stimulus priors (Ganguli &

Simoncelli, 2014).

The computations underpinning sensory discrimination for single, isolated stimuli are

now relatively well explored, with the existence of a number of well-developed decod-

ing models for stimulus features such as contrast and orientation (Paradiso, 1988; Graf

et al., 2011; Sanborn & Dayan, 2011; May & Solomon, 2015). Decoding performance in the

context of target uncertainty, however, is still a very poorly understood problem. In one

prominent approach, selection of the maximum of a set of neural responses acts as a coarse

proxy for decision, so called max-pooling models of sensory selection (Pelli, 1985; Palmer

et al., 2000; Pestilli et al., 2011). While max-pooling models have been successful in fitting

contrast-discrimination thresholds under conditions of target uncertainty (Pestilli et al.,

2011; Hara & Gardner, 2014), such decision rules are somewhat ad-hoc in nature, and are

known to perform poorly relative to ideal observer models for tasks such as visual search

and change detection (Ma et al., 2015). In addition, it is not always clear how max-pooling

models overlap with other models of sensory interaction and attentional selection, such as
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models based on divisive normalization (Heeger, 1992; Reynolds & Heeger, 2009; Itthipuri-

pat et al., 2014). In sum, there is a need for computational approaches that can more readily

explore the interactions between multiple stimuli across potentially multiple feature dimen-

sions.

Some recent efforts have been made in this regard; yet, these have either been purely the-

oretical in nature (Orhan & Ma, 2015), or have been focused on the stimulus estimation

paradigm (Matthey et al., 2015). One potentially promising line of investigation relates to

the notion of linear mixing of neural responses. Numerous investigations have now illus-

trated how neural responses to a given stimulus are often well-approximated by a weighted

sum of neural responses to the individual, constituent features of that stimulus (Recan-

zone et al., 1997; Zoccolan et al., 2007; Busse et al., 2009). A recent theoretical investigation

suggests that this type of neural response mixing may be substantially more detrimental to

decoding performance than sizeable decreases in response gain or noise amplitude (Orhan

& Ma, 2015). Thus, a linear mixing framework may be particularly appropriate for under-

standing the strength of distractor effects in different stimulus contexts and tasks, and given

the right formal decoding approach (i.e., FI), might be readily studied across multiple deci-

sion spaces simultaneously.

In Chapter 2, we systematically tested the effects of distractor contrast on the discrimina-

tion of changes to the contrast or orientation of a target stimulus. Contrast-discrimination

performance was severely disrupted when high-contrast distractors appeared in the oppo-

site visual hemifield to the target, while disruption of orientation-discrimination perfor-

mance was more graded in magnitude. In the present chapter, we aimed to develop a com-

putational understanding of the nature of these stimulus interactions. To do so, we con-
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structed an FI-based model for the simultaneous estimation of contrast- and orientation-

discrimination thresholds from an idealized neural population. We validated the form

of our encoding model and the relevance of the FI approach by first fitting the model to

single-stimulus discrimination data collected in a separate auxiliary experiment. An encod-

ing model with multiple neural subpopulations and an expansive population-level contrast

response successfully replicated the single-stimulus discrimination data. We then extended

this model to allow for interactions between target and distractor stimuli; for the particular

tuning parameterizations we explored, however, neither of two common models of sensory

interaction (divisive normalization, linear mixing of neural responses) could satisfactorily

explain the datasets from Chapter 2 simultaneously. We discuss possible reasons for the fail-

ure of these models, in the process suggesting a number of possible future extensions of this

work.

3.2 Materials and Methods

3.2.1 Background

In Chapter 2, we measured contrast- and orientation-discrimination thresholds for target

stimuli presented alongside an irrelevant distractor. The cornerstone of our modeling ef-

forts in this chapter is the computation of FI in an idealized sensory neural population that

simultaneously encodes stimulus contrast and orientation. FI is a measure of the maximum

accuracy achievable by an unbiased estimator of an encoded stimulus value, and is equal

to the inverse of the square of the discrimination threshold (Seung & Sompolinsky, 1993;

Abbott & Dayan, 1999).

Our approach consisted of two stages. First, we validated the FI approach by fitting a
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Figure 3.1: Sensory discriminaধon for isolated sধmuli: encoding-decoding model. To validate the Fisher informaধon
approach, we developed a neural populaধon model for predicধng contrast- and orientaধon-discriminaধon thresholds
for single, isolated sধmuli. See Materials and Methods for details.

model to single-stimulus contrast- and orientation-discrimination thresholds collected in

a separate, auxiliary experiment. This allowed us to understand the basic encoding model

architecture necessary for fitting these types of discrimination data simultaneously. The

model architecture we define at this stage resembles one other recent approach (May &

Solomon, 2015). We then adapted this conceptual framework with the goal of accounting

for the distractor-dependent threshold increases described in Chapter 2. To do so, we al-

lowed for interactions between spatially separated target and distractor stimuli, comparing

the performance of two very general models of sensory interaction, divisive normalization

(Heeger, 1992; Carandini & Heeger, 2012) and linear mixing of neural responses (Orhan &

Ma, 2015).

3.2.2 Neural model: Discrimination thresholds for isolated stimuli

Fisher information

We consider the problem of simultaneously encoding contrast c and orientation s in a pop-

ulation of independent Poisson-like neurons (Figure 3.1). We assume that the mean re-
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sponse of the i-th neuron to (c, s) is given by:

fi(c, s) = gi(c)hi(s), (3.1)

where gi(c) controls the contrast response of the neuron and hi(s) determines the neural

tuning to stimulus orientation. For the contrast response function, gi(c), we select a mono-

tonic equation of Naka-Rushton form (Naka & Rushton, 1966),

gi(c) =
cni

cni + αni
i
. (3.2)

The responsiveness of the neuron to contrast is governed by the exponent, ni, and the semi-

saturation contrast, αi. For orientation tuning curves, we select a population of homoge-

neous Von Mises functions,

hi(s) = βi exp(γi(cos(s− si)− 1)) (3.3)

where the parameters βi and γi determine the response gain and the concentration parame-

ter (narrowness) of the tuning curve. We assume independent Poisson noise:

p(r|c, s) =
∏
i
p(ri|c, s) (3.4)

=
∏
i

1
ri!
e−fi(c,s)fi(c, s)ri . (3.5)
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To compute model thresholds, we first need to compute the Fisher information matrix

(FIM):

I(c, s) =

 Icc Ics

Ics Iss

 . (3.6)

This 2x2 matrix has three components: Icc and Iss on the diagonal, and Ics off-diagonal. The

components of the FIM are computed in the standard way (Dayan & Abbott, 2001). For

example,

Icc = −
⟨
∂2 log p(r|c, s)

∂c2

⟩
(3.7)

= −
∑

i

⟨
∂2 log p(ri|c, s)

∂c2

⟩
, (3.8)

where ⟨·⟩ is the expected value under p(r|c, s). This expression can be evaluated as

Icc =
∑

i

(
∂fi(c,s)
∂c

)2

fi(c, s)
. (3.9)

Similarly,

Iss =
∑

i

(
∂fi(c,s)

∂s

)2

fi(c, s)
(3.10)

Ics =
∑

i

∂fi(c,s)
∂c

∂fi(c,s)
∂s

fi(c, s)
(3.11)
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Per the Cramér-Rao bound (Cover & Thomas, 1991), the covariance matrix of an optimal

estimator is the inverse of the FIM:

Σ(c, s) = I(c, s)−1 (3.12)

The predicted thresholds for contrast and orientation can then be computed as the square

roots of the diagonal elements of the resulting covariance matrix.

Tuning properties

So far, we have computed optimal thresholds for an idealized neural population with de-

fined contrast and orientation tuning. However, this tuning has free parameters. We now

specify how we chose these parameters to tile the respective feature dimensions, adapting an

approach recently taken by May & Solomon (2015) to fit discrimination thresholds.

First, we took a population of N = 256 neurons, and divided this into 8 smaller subpop-

ulations of N = 32 neurons each. Within each subpopulation, the preferred orientations

of the neurons were set to fixed values equally spaced in orientation space. The parame-

ter controlling the narrowness of the orientation tuning width, γ, was allowed to vary in

model search, but was held fixed across all neurons in the entire population. The remain-

ing parameters were held fixed within each subpopulation, but were allowed to vary across

the subpopulations within certain constraints. Semi-saturation contrasts, α, were spaced in

equal logarithmic steps between 0.01 and 3 (proportion contrast); values greater than 1 have

been observed in neural recordings (Albrecht & Hamilton, 1982) and have been used in

prior model efforts similar to ours (Chirimuuta & Tolhurst, 2005; May & Solomon, 2015).

For the remaining parameters, we explored two scenarios:
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• β and nwere held constant for all subpopulations (constant parameterization).

• β and nwere allowed to vary by subpopulation index j, according to independent,

two-parameter exponential functions (expansive parameterization).

These choices were motivated by a couple of desires. First, having a potentially graded

scaling of maximum firing rate for each subpopulation seemed logical, as in the normal-

ized case, the idealized contrast tuning functions naturally asymptote at different response

amplitudes. Similar approaches have been used previously (Chirimuuta & Tolhurst, 2005;

May & Solomon, 2015). Second, as has now been documented a number of times, model

fits to contrast-discrimination thresholds seem to require an expansive, population-level

contrast response, to account for the flattening or dip in thresholds at very high-contrasts

(Kingdom & Whittle, 1996; Zenger-Landolt & Heeger, 2003; Chirimuuta & Tolhurst,

2005; May & Solomon, 2015). From a modeling perspective, this could be incorporated in

a number of ways; we chose an approach where the relevant contrast sensitivity parameters

were either held fixed, or were allowed to increase in magnitude with the semi-saturation

contrast of the subpopulation. In model fits, the constant and expansive model variants

above had 3 free paramters (β, n, γ) and 5 free parameters (γ, plus two independent, 2-

parameter exponential functions controlling β and n) each.

3.2.3 Neural model: distractor effects on sensory discrimination

Models of sensory interaction

We then extended our FI model approach to incorporate either of two general models of

sensory interaction, in an attempt to fit the data from Chapter 2. In one version of the
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model, we allowed for sensory interactions through the linear mixing of separate, sensory

neural responses (Orhan & Ma, 2015). In this model, we assume two neural populations

encoding the contrasts and orientations of the target and distractor gratings. For neurons in

the first group, the mean response is given by:

fi(ct, cd, st, sd) = w1
cni
t

cni
t + αni

i
hi(st) + w2

cni
d

cni
d + αni

i
hi(sd) (3.13)

where ct and cd are the target and distractor contrasts, and st and sd are the target and distrac-

tor orientations. We assume w1 > w2 for neurons in this group, hence they primarily encode

the target grating; for neurons in the other group, the weights are switched, so they primar-

ily encode the distractor. We further assume w1 + w2 = 1. We can think of w1 and w2 as

roughly capturing receptive field effects, for example, in some higher-level read-out stage

where spatial receptive fields are broad.

We also tested a model in which sensory interactions occurred through divisive normal-

ization (Heeger, 1992; Carandini & Heeger, 2012). For the divisive normalization model,

we used an architecture like that described above for the linear mixing model, but with

two modifications. First, we set the weight term in the model to 1, so that there was no

response mixing (although there was still global read-out from separate target-centered

and distractor-centered neural populations). Second, we incorporated the relevant nor-

malizing or divisive terms into the model i.e., for the target-centered population, the dis-

tractor contrast was added to the denominator of the Naka-Rushton gain expression; for

the distractor-centered population, the target contrast was added to the denominator. In

model fitting, we allowed these divisive terms to be scaled by a flexible weight term, k.

We selected these models for a number of reasons. Divisive normalization, for exam-
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ple, is thought to be a canonical computation in sensory and neural systems (Heeger, 1992;

Carandini & Heeger, 2012), and may reflect the broader feedforward inhibition typically

found in neural circuits. In the present context, it could arise through rapid fluctuations

in attentional gain. Linear mixing, on the other hand, has been observed in numerous vi-

sual computations (Recanzone et al., 1997; Zoccolan et al., 2007; Busse et al., 2009), and is

an appropriate choice of model where graded stimulus interactions are concerned (Orhan

& Ma, 2015). Linear mixing might also capture behaviors similar to max-pooling (i.e., for

high-contrast distractor conditions).

As with the earlier model, we assumed independent, Poisson-like noise. We simulated

model performance by computing all sixteen entries of the 4x4 FIM according to:

Ixy(ct, cd, st, sd) =
∑

i

∂fi
∂x

∂fi
∂y

fi(ct, cd, st, sd)
(3.14)

where the x and y pair takes on each possible combination of the indices: (ct, cd, st, sd). After

computing these terms, we then estimated thresholds by inverting the FIM, and taking the

square root of the resulting diagonal variance terms as before. In passing, note that the sum

across neurons described here and earlier is the same whether or not the neurons are also

indexed by subpopulation.

Tuning properties

For both sensory interaction models, we adopted the same expansive model architecture

used in fitting the single-stimulus discrimination data. Specifically, we allowed for N = 256

neurons spread across 8 subpopulations. Semi-saturation contrasts were again set to fixed
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values that varied from subpopulation to subpopulation, tiling the contrast axis in equal

logarithmic steps between fixed bounds of 0.01 and 3 (proportion contrast). Each of the

sensory interaction models had a total of six free parameters (four exponential function

parameters, γ and, either w or k).

3.2.4 Model fitting

In both phases, we fit models to contrast- and orientation-discrimination thresholds simul-

taneously (i.e., constrained by the measured thresholds from both experiments), search-

ing for the set of parameters that gave the smallest combined RMSE relative to observed

thresholds. To calculate combined RMSE, observed thresholds were converted to propor-

tions (0-1) and radians respectively, and the squared error relative to model predictions was

calculated for each test condition before taking the mean and square root. For the single-

stimulus discrimination data, this included ten conditions. For the two-stimulus data from

Chapter 2, this included twenty-eight conditions in total (twelve contrast and sixteen ori-

entation conditions). In all model fits, the preferred orientations of the neurons within a

given subpopulation were equally spaced in orientation space between -π:π, and for sim-

plicity, we assumed the orientations of the target and distractor stimuli were centered in

this space.

We also made two minor transformations of the predicted thresholds prior to RMSE

calculation. First, the thresholds measured in Chapter 2 were estimated from the 75% cor-

rect performance point taken from Weibull model fits; however, the σ value returned by FI

reflects a different performance level (i.e., approximately 84.1% correct performance on a cu-

mulative gaussian). Concerned that this deviation might affect our optimizations in some
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systematic way, we approximated the 75% percent correct point prior to RMSE calculation,

by rescaling the predicted thresholds appropriately. In addition, as the model orientation

space (-π:π) was twice the size of the space in which orientation-discrimination thresholds

were actually measured, we halved the predicted orientation-discrimination thresholds be-

fore RMSE calculation.

In all model-fitting, we used an evolutionary search algorithm known as Covariance Ma-

trix Adaptation (CMA-ES) (Hansen & Ostermeier, 1996). This is a very robust, cutting-

edge optimization algorithm that makes few assumptions regarding the nature of the func-

tion being optimized. We implemented CMA-ES using a freely available MATLAB func-

tion version (cmaॸ.m, available at www.lri.fr/∼hansen/cmaesintro). As a stochastic al-

gorithm, CMA-ES gives different output depending on the random seed used for model

initiation. For all model fits, we ran 100 separate searches using the high-performance com-

puting (HPC) cluster at New York University, each with a different set of starting param-

eter values for the optimization. Best-fit parameters for a particular observer/model were

taken from the model run that gave the smallest RMSE out of all runs. Individual param-

eters were allowed to vary within broad but finite bounds as follows: the scale of the two

exponential gradients (or constant in the case of the constant parameterization fits to single-

stimulus data) were: β: 1-100 and n: 0.1-4. The power of each exponential gradient could

vary from 0:5, thus allowing for potentially expansive increase in parameter value with in-

creasing semi-saturation contrast. Remaining parameters could range as follows: γ: 0.1-

6; w (linear mixing): 0.5-1; k (divisive normalization): 0-1. We added a small error term to

the lower bound for w, to prevent the emergence of singular and badly-scaled matrices in

the optimization. Note also that the narrowest possible tuning function width (γ = 6) is
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equivalent to a gaussian σ of approximately 23.4◦, reasonable given that 32 neurons tiled

the model orientation space of -π:π. For all model fits, optimization starting values were

randomly drawn from within the 25th-75th percentile ranges for each of these parameter

ranges, and the CMA-ES search width parameter was set to one-third of the respective pa-

rameter range.

3.2.5 Auxiliary experiment

Data collection for the main experiments is described in detail in Chapter 2. Below, a brief

description is given for an auxiliary experiment measuring single-stimulus discrimination

thresholds. This was carried out with the aim of appropriately constraining computational

models of performance in the main experiments, and is thus described here. The general

methods and informed consent procedures were largely identical to those described in

Chapter 2.

In the auxiliary experiment, we measured contrast- and orientation-discrimination thresh-

olds for isolated targets, using a largely identical set-up to the main experiments (with dis-

tractor contrast now set to 0% contrast). Data were collected from seven observers (in two

or three separate sessions each), including three (two authors) who completed the main

experiments. Distributed cues (i.e., white arrows) were presented before and during the

stimulus intervals, such that observers did not know in advance on which side the stimulus

would appear (although the target did appear on the same side for both intervals, so we can

assume the second interval location was known). A post-cue again indicated target location.

As a primary goal of this experiment was to collect data that might validate our model ap-

proach, we included one additional low-contrast target condition (2%), so as to better mea-
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sure the dynamic range of discrimination thresholds. Attempts to measure performance at

much lower pedestal contrast were abandoned, as we felt that orientation discrimination at

much lower contrast and with spatial uncertainty amounted to a form of stimulus detec-

tion. Thresholds were estimated using procedures similar to those described earlier.

3.3 Results

3.3.1 Fisher information-based model of discrimination thresholds

An important aspect of our experimental design in Chapter 2 was the use of identical stim-

ulus parameters across experiment, varying only the task performed by the observer. By

assuming that identical sensory neural responses were evoked across experiment, character-

istics of how the individual sensory neural responses interacted and were decoded must un-

derlie the threshold differences we observed. To formalize this approach to fitting the data,

we developed an encoding-decoding model based on Fisher information (FI), for the simul-

taneous estimation of contrast- and orientation-discrimination thresholds from an idealized

sensory neural response (Figure 3.1). In doing so, we make the simplifying assumption that

thresholds are inversely related to the precision of the decoder, and exploit the fact that FI

provides a measure of this precision. Specifically, subject to the Cramér-Rao bound, FI sets

a lower limit on the accuracy with which the true stimulus value can be decoded by any un-

biased estimator (Cover & Thomas, 1991; Abbott & Dayan, 1999). We validated the form

of this model by first fitting it to single-stimulus contrast- and orientation-discrimination

thresholds collected in a separate auxiliary experiment. Model fits were doubly constrained

by fitting simultaneously to both contrast- and orientation-discrimination datasets (i.e., the

model parameters were held fixed across tasks).
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Figure 3.2: Sensory discriminaধon for isolated sধmuli: model fits. A) Contrast- and B) orientaধon-discriminaধon
thresholds were collected in an auxiliary experiment. Mean (s.e.m.) of the observed thresholds (n = 7) are ploħed by
the datapoints. Curves represent the mean of the predicted model thresholds from fits to the individual observer
data. C) Predicted contrast tuning funcধons for the expansive parameterizaধon model, for one illustraধve observer.
Darker colors represent subpopulaধons with higher semi-saturaধon contrast. For a given subpopulaধon, the shape
of the funcধon is controlled by the semi-saturaধon contrast, the contrast exponent, and the maximum firing rate. D)
The summed populaধon-level response illustrates a clearly expansive profile.

For isolated sensory neural responses, a model with contrast sensitivity parameters held

fixed across neural subpopulations (constant parameterization) failed to satisfactorily fit

real data (Figure 3.2A and B, RMSE mean/s.e.m. = 0.0212/0.0026). The single-stimulus

contrast-discrimination thresholds exhibited a pointed decrease in magnitude for very high-

contrast pedestals, a characteristic which has been documented before by others, under a

variety of stimulation conditions (Kingdom & Whittle, 1996; Zenger-Landolt & Heeger,

2003; Pestilli et al., 2011). By designing model neurons such that they had logarithmically-

spaced semi-saturation contrasts, while keeping all other parameters constant, model behav-

ior was essentially Weber-like in form, with predicted thresholds increasing across the full

range of the contrast axis. Thus, the model with constant parameterization for the contrast

sensitivity parameters did not have sufficient flexibility to fit the late dip in thresholds. Pre-

sumably, the population-level contrast response relevant for the task is expansive at high-

contrast values, which would result in decreased discrimination thresholds.

To build greater flexibility into the encoding model, we adapted an approach taken re-
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cently by May & Solomon (2015). In this investigation, the authors accounted for the so-

called ‘near-miss’ to Weber’s Law by allowing for an exponential parameterization govern-

ing the contrast sensitivity of the population (May & Solomon, 2015). We incorporated this

feature into our model, thus allowing for an expansiveness to the population-level contrast

responses; preliminary model attempts suggested that flexibility of this sort was essential

to fit the relatively sizeable late decrease in contrast-discrimination thresholds. It is worth

pointing out, however, that a variety of methods might achieve the same goal. For exam-

ple, appropriately designed transformations of the input luminance values (Chirimuuta &

Tolhurst, 2005), or incorporation of a late expansiveness into the definition of the contrast

response function itself (Zenger-Landolt & Heeger, 2003) could achieve qualitatively simi-

lar effects. In the model with expansive parameterization, we allowed the maximum firing

rate and contrast exponent parameters (β, n) to increase as a function of semi-saturation

contrast according to independent, 2-parameter exponential functions. In this way, we

introduced a gradient of sensitivity across the subpopulations that would allow for an ex-

pansive population-level contrast response to emerge.

The model with expansive parameterization provided substantially better simultaneous

fits to the single-stimulus threshold data, replicating the late threshold decrease for high-

contrast stimuli (Figure 3.2A and B, RMSE mean/s.e.m. = 0.0083/0.0010). This behavior

was driven by the substantially greater expansiveness in the contrast responses for the ex-

pansive model, as nicely depicted in an example of fitted tuning functions and summed

population response for one illustrative observer (Figure 3.2C and D). This late expansive-

ness is qualitatively very similar to inferred contrast response functions found elsewhere

e.g., in Fig. 6B of Zenger-Landolt & Heeger (2003).
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for details.

3.3.2 Sensory discrimination in the presence of distractors: model fits

The FI approach tested thus far is inherently local in application. Thus, conceptually at

least, it may not be the appropriate level at which to implement models where target and

distractor interact across broadly spaced locations and across two feature dimensions. In

an attempt to fit the datasets illustrated in Chapter 2, we adopted an approach based on a

recently described linear mixing model, in which FI is computed from a neural population

that receives mixed inputs (Orhan & Ma, 2015). In this scheme, the readout neural pop-

ulation might be some higher-order sensory or decision-related neural population, where

broader spatial receptive fields are likely. Such a scheme might allow for more graded and

realistic distractor effects to emerge, while still qualitatively allowing for behavior not un-

like more extreme models (i.e., max-pooling). In addition, we compared this model to a

model in which distractor effects arose, instead, through divisive normalization (Heeger,

1992; Carandini & Heeger, 2012). For both models, we utilized the same tuning parame-

terization that was used for the single-stimulus model fits, thus allowing for a potentially

expansive population-level contrast response.
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Sensory discrimination in the presence of distractors: model fits

S1 S2 S3 S4 S5 S6 S7 S8 Mean (s.e.m.)

Model
LM .0570 .0479 .0479 .0480 .0623 .0329 .0233 .0324 .0440 (.0047)
DN .0516 .0586 .0471 .0554 .0637 .0358 .0240 .0361 .0465 (.0048)

Table 3.1: RMSE values for each observer from the best simultaneous fits to the data from Chapter 2. See Materials
and Methods for details. LM = linear mixing model; DN = divisive normalizaধon model.

Neither model provided satisfactory fits to the data (Figure 3.3). The linear mixing model,

a weighted sum of independent (i.e., Naka-Rushton) sensory neural responses, failed to

capture the shape of the two-stimulus data in general (Figure 3.3A). While the mean of the

predicted contrast-discrimination thresholds for the linear mixing model did deviate as a

function of distractor contrast, the magnitude of this effect was relatively small, and the

model was unable to reproduce the observed orientation threshold increase with increasing

distractor contrast. The model with divisive normalization also failed to replicate the shape

of both datasets simultaneously (Figure 3.3B). In sum, both models provided quantitatively

poor simultaneous fits to the two datasets, with neither satisfactorily recreating the profile

of high-contrast distractor effects observed in Chapter 2.

When we look to the RMSE metrics from the individual observer fits (Table 3.1), we see

little reason to favour either model definitively. At their simplest, these results suggest that

model flexibilities other than purely linear mixing or divisive normalization are likely neces-

sary to account for the shape of the two datasets simultaneously. We should also note that

there appeared to be some degree of similarity in the performance of the two models, as as-

sessed by the relatively similar RMSE values found for the models in a number of instances.
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This may reflect some broad constraints that our tuning parameterization imposed on

model behavior generally, perhaps preventing one or the other model from providing bet-

ter fits. However, the same tuning parameterization very successfully fit the single-stimulus

discrimination thresholds. While we lack detailed formal model validation and comparison

in the analyses presented here, we did at least validate the tuning parameterization with a

simpler dataset first, successfully fitting those data with an expansive tuning parameteriza-

tion.

3.4 Discussion

Computational models of observer performance are essential components in any full un-

derstanding of task-specific psychophysical behavior. In the present chapter, we attempted

to develop a precise neural population model of the psychophysical performance described

in Chapter 2. We began by first validating an FI-based modeling approach, successfully fit-

ting a specific encoding model simultaneously to contrast- and orientation-discrimination

thresholds measured in a separate auxiliary experiment. We then extended this model to the

more complex two-stimulus tasks described in Chapter 2, and found that neither of two

general models of sensory interaction provided good simultaneous fits to those datasets.

In principle, FI-based models of sensory selection are an improvement on models based

on sub-optimal, winner-take-all decoding. Nevertheless, key limitations of our approach

must first be acknowledged. First, fits were not constrained by simultaneous neural re-

sponse measurements, unlike in some prior related investigations (Pestilli et al., 2011; It-

thipuripat et al., 2014). Second, the question of the physiological basis of the expansive

contrast response is largely left unanswered here. While there is some evidence of broadly
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divergent contrast sensitivities across magnocellular and parvocellular pathways (Kaplan

& Shapley, 1986; Shapley, 1990), whether the late contrast threshold decrease we observed

relates directly to some distinct neural source (i.e., the response of some subpopulation

of neurons with high semi-saturation contrasts) is unknown. When optimized in fitting,

the parameter values governing the sensitivity of the model to contrast varied substan-

tially across the subpopulations i.e., with some individual values that could be considered

unrealistically large or small when considered alongside analogous physiological measure-

ments. Nonetheless, we found the reliance on expansiveness in the single-stimulus model

fits broadly compelling, and suggest that the exact architecture of the tuning parameteriza-

tion is of less importance, from the outset being abstract in nature.

The results here must also be examined for a variety of more technical reasons. First,

we can not rule out the possibility that, with the addition of some simple, extra flexibil-

ity, one or the other sensory interaction models may have done a better job of fitting the

two-stimulus datasets. For example, a combination of both forms of sensory interaction

might be worth exploring in model form (i.e., a generalized linear mixing model with divi-

sive normalization). In addition, we can not rule out the possibility that alternate forms of

tuning function parameterization might have provided better grounding for model testing.

For example, exploratory model searches led us to design an encoding model with a fixed,

intermediate number of subpopulations (i.e., 8), and with the upper bound on the semi-

saturation contrasts fixed above 1 (i.e., specifically, at the proportion contrast of 3). These

were very specific design choices that on qualitative inspection and piloting, appeared to

give relatively smooth model behavior relative to other discretizations of the space. As a

result, however, we can not claim that the results here hold generally for all other architec-
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tures. Yet, focus on such details could potentially overshadow the key point of the model

fits to the single-stimulus discrimination data i.e., the necessity for the model to generate an

expansive population-level contrast response. This type of response could be simulated in

a variety of ways, with the abstract, underlying components utilized of less general interest.

Future investigations should at least give some weight to the alternative approaches men-

tioned earlier e.g., models that transform the input luminance values (Kingdom & Whittle,

1996), or that add an expansiveness directly to the definition of the contrast response func-

tion (Zenger-Landolt & Heeger, 2003).

Finally, in deriving the FI-based expressions governing threshold behavior, we made

several simplifying assumptions that should be mentioned. We chose subpopulations of

set size and with homogeneous orientation tuning functions, and we assumed uniform

noise correlation (set to zero) across the neural population. The possibility remains that

some variant combination of gain model, tuning function and neural noise parameteri-

zation provides an alternative explanation of our datasets. For example, our assumptions

about the form of neural noise may be limited in their validity, ignoring the large role now

thought to be played by modulatory signals in setting the overall amplitude of sensory

noise (Goris et al., 2014). While certainly over-simplistic, our assumption of zero correla-

tion across neurons was a reasonable place to begin our model fitting. There is still much

debate about how correlations modulate decoding performance, and about the conditions

that determine whether increased correlations lead to facilitation or disruption of decoding

(Abbott & Dayan, 1999; Ecker et al., 2011). Emphasis on such details here, however, would

have obscured the main goal of testing two general models of interaction between separate

sensory neural responses.
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In conclusion, we studied the behavior of FI-based models of threshold performance, as

simultaneously applied to data from the contrast- and orientation-discrimination experi-

ments described in Chapter 2. We first validated this approach by fitting model expressions

to single-stimulus discrimination data collected in auxiliary experiments. We then extended

the model to allow for the linear mixing or divisive normalization of neural responses from

separate target and distractor spatial locations. Neither sensory interaction model provided

a quantitatively convincing fit to the datasets. Future model investigations might test alter-

nate tuning function parameterizations, or combine both types of sensory interaction in a

single model.

62



4
Delayed estimation of luminance contrast

4.1 Introduction

For many years, the contents of VSTM were conceptualized as being discrete in

nature: an item was either in memory or it was not (Luck & Vogel, 1997; Cowan, 2001).

From the point of view of perceptual psychophysics, this notion is simplistic to the point of

being untenable. In signal detection theory models of psychophysical performance, for ex-

ample, the observer’s internal representation of a stimulus is taken to be a noise-corrupted

version of the stimulus; thus, an item can be encoded to a greater or lesser degree, depend-

ing on the amount of noise in the representation. In the study of VSTM, however, it has
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taken a long time for the concept of a memory being a noisy version of the stimulus to

take hold. Cognitive psychology studies of VSTM have typically used coarse stimuli with-

out parametric variation e.g., change detection among items that were hand-picked by the

experimenter with the goal of making them highly discriminable (Pashler, 1988; Luck &

Vogel, 1997; Cowan, 2001). In contrast, researchers working in the tradition of threshold

psychophysics have long since adopted the idea of noisy memories, a concept implicit, for

example, in paradigms that measure the magnitude of stimulus change necessary for some

criterion level of discrimination performance (Palmer, 1990; Magnussen & Greenlee, 1999).

Recently, the concept of noisy memories has gained ground in VSTM research, due

to the introduction of a new paradigm of probing VSTM known as delayed estimation

(Wilken & Ma, 2004; Zhang & Luck, 2008; Fougnie et al., 2012; van den Berg et al., 2012;

Bays, 2014). In this paradigm, inspired by earlier work from Prinzmetal and colleagues

(Prinzmetal et al., 1997, 1998), the observer reports the identity of a remembered stimulus

on a continuum, repeating this process over many trials to create a distribution of stimulus

estimates. The width of the resulting estimate distribution can then be taken as a measure

of the level of noise in the memory. Delayed estimation has been applied most notably to

the study of VSTM for stimulus features such as orientation and color (Fougnie et al., 2012;

van den Berg et al., 2012). For example, recent studies have quantified the dependence of

noise level on set size, and attempted to determine whether there is an upper limit on the

number of items that can be successfully remembered (Zhang & Luck, 2008; Bays et al.,

2009; van den Berg et al., 2012).

While the vast majority of research using delayed estimation has studied features such as

orientation and color, it cannot be assumed that these two features are representative of all
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features stored in VSTM. For example, the neural representations of orientation and color

rely on very specific neural substrates: topographically-arranged maps in the case of orien-

tation (Hubel & Wiesel, 1962; Ferster, 2003), and specific color-opponent, retino-cortical

pathways in the case of color (Lennie et al., 1990; Johnson et al., 2001; Gegenfurtner &

Kiper, 2003; Brouwer & Heeger, 2009). If VSTM relies on the same neural networks re-

sponsible for initial sensory encoding, as some influential theories posit (Awh & Jonides,

2001; Jonides et al., 2008), then these structured neural representations provide an ideal

substrate for relatively precise VSTM encoding and subsequent read-out. Thus, it is per-

haps not surprising that accurate maintenance of orientation and color information is pos-

sible over relatively long delays (Nilsson & Nelson, 1981; Magnussen & Greenlee, 1999).

In Chapter 2, we compared VSTM for two different stimulus features, luminance con-

trast and orientation, under conditions of target location uncertainty. Our findings, as well

as several prior results, suggest that VSTM for luminance contrast may be fundamentally

different from VSTM for features such as stimulus orientation. First, luminance contrast

is an intensity-coded variable (Albrecht & Hamilton, 1982), lacking the precisely-structured

representational maps that encode for features such as orientation. Thus, luminance con-

trast is likely encoded into VSTM in a much more abstract way than other visual features

(Xing et al., 2014). Second, evidence exists suggesting that memory for luminance contrast

is impoverished: for example, contrast-discrimination thresholds increase substantially with

inter-stimulus delay (Magnussen et al., 1996; Magnussen & Greenlee, 1999), and in the pres-

ence of distractor stimuli (Pestilli et al., 2011). Unfortunately, our understanding of the

encoding and retention of luminance contrast information is based primarily on the re-

sults of coarse, 2-IFC discrimination tasks (Nachmias & Sansbury, 1974; Legge & Foley,
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1980; Magnussen & Greenlee, 1999). While one prior investigation did use delayed estima-

tion to study luminance contrast encoding, this study focused on manipulations of atten-

tion, and lacked the detailed parametric variation now common in delayed-estimation tasks

(Prinzmetal et al., 1997).

These factors motivated us to examine VSTM for luminance contrast using the delayed-

estimation paradigm. In Experiment 1, observers were instructed to hold in memory the

perceived luminance contrast of a briefly flashed circular disc, and after a brief delay, to re-

construct the memorized contrast by adjusting the luminance of a subsequently presented

match disc (Figure 4.1). We systematically measured estimate distributions for luminance

contrasts spanning from low (7%) to high (76%), and found very consistent profiles of per-

formance across observers. Control experiments investigated how the distribution shapes

depended on the onset contrast of the match disc and on the polarity of the stimuli. We

then developed a low-parameter, neurally plausible model of observer performance on the

task, a model which incorporated a realistic form of contrast response function (i.e., Naka-

Rushton), and assumed maximum-likelihood read-out. Our encoding-decoding model suc-

cessfully described the shape of estimate distributions for individual observers, predicting

neurally plausible gain parameter values.

4.2 Materials and Methods

4.2.1 Participants

Data from eight observers (one author) were collected in Experiment 1. Observers were re-

cruited from the local community and student body at New York University (paid $10/hr),

and amongst lab colleagues. Observers had varying degrees of experience in psychophysi-
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Figure 4.1: Delayed esধmaধon of luminance contrast: experiment. Observers were briefly presented (200 ms) with
a small luminance-defined, circular disc (1◦ diameter), either leđ or right (4◦ eccentricity) of fixaধon. The disc could
appear with one of eight luminance contrasts on different trials. Ađer the first disc disappeared and following a
brief delay (1500 ms), a match disc appeared at the same locaধon as the first, this ধme with a random luminance
contrast. Observers had to esধmate the luminance contrast of the first disc by adjusধng (with the computer mouse)
the luminance contrast of the match disc. Ađer esধmaধng the luminance contrast of the first disc as accurately as
possible, observers recorded their esধmate by pressing the leđ mouse buħon.

cal testing. All observers gave written informed consent, and experiments were carried out

with approval of the NYU University Committee on Activities Involving Human Subjects.

4.2.2 Experiment 1

Task

An example trial is illustrated in Figure 4.1. On each trial of the experiment, observers were

briefly presented (200 ms) with a small luminance-defined disc (1◦ diameter) on the com-

puter monitor, either left or right (4◦ eccentricity) of the black fixation dot. On any trial,

the disc appeared with one of eight luminance contrasts (see Test set-up and stimulus de-

sign), which was selected from a randomly-shuffled array within each block. After the first

disc disappeared and following a brief delay (1500 ms), a second ‘match’ disc appeared at

the same location as the first, this time with a luminance contrast chosen randomly from

the range of thirty-eight possible estimate luminance contrasts (see Test set-up and stimu-
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lus design). Observers were required to estimate the luminance contrast of the first disc by

adjusting (with the computer mouse) the luminance contrast of the match disc. Luminance

contrast of the match disc was adjusted by making small horizontal motions of the mouse

- leftward motions of the mouse made the disc appear dimmer, rightward motions of the

mouse made the disc appear brighter. Observers were instructed that there was no set in-

terval for responding, and to try to perform as accurately as possible. After estimating the

luminance contrast of the first disc as accurately as possible, observers pressed the left mouse

button to record their estimate.

Observers completed four test sessions, of about 1 hr duration each. Each session con-

sisted of five 80-trial blocks (10 trials per luminance contrast level), preceded by one 40-trial

practice block. This gave a total of 1600 test trials per observer (i.e., 200 trials per luminance

contrast). During each block, observers rested their chin on a chin-rest, and were instructed

to maintain fixation on the central fixation dot throughout each trial (during presentation

of the first disc and while adjusting the match disc). Observers also received limited mo-

tivational feedback, after every second block (e.g., ‘Well done! You are performing above

average.’ or ‘Good job. Your performance level is around the median of all observers.’). The

feedback statements above were alternately selected at random, and feedback was not re-

lated to any performance criterion per se.

Test set-up and stimulus design

Stimuli were presented in a darkened room on an iPad retina display (monitor only), con-

trolled by a Windows-based PC running MATLAB (The Mathworks) and the Psychophysics

Toolbox. Resolution of this small monitor was 2048 pixels x 1536 pixels. The display was
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controlled by an AbuseMarK LCD adapter and fixed in a custom-frame affording three de-

grees of freedom in monitor positioning. Before beginning each session, the experimenter

ensured that the monitor was positioned centrally in front of the observer, with the fixa-

tion dot at eye height. The display was positioned in landscape mode (i.e., with the higher

resolution along the horizontal). Viewing distance was set to 28.5 cm.

Monitor brightness was maintained at its default maximum setting (which allowed for

maximum luminance values up to 390-400 cd/m2). To control gray levels appropriately, we

first manually gamma-corrected the display across its full range of luminance output (using

a Spectrascan PR650 photometer with uniform luminance across the monitor). We then

created a reduced luminance range look-up table spanning one-quarter of the full lumi-

nance range (i.e., from 0-93.5 cd/m2), by selecting the first quarter of the gamma-corrected,

full range look-up table and interpolating intermediate values to create a vector of 256 RGB

intensity values. This reduced luminance range is comparable to ranges typically reported

in studies where luminance contrast is manipulated (i.e., in CRT-based experiments). The

reduced range, however, meant that nearby RGB indices overlapped somewhat in output

luminance. Using the photometer, we manually measured the actual output luminance

(with several repeats) for each RGB index in the reduced range. For the positive luminance

deflections used in Experiment 1, the 129 RGB levels used (i.e., the background index of 127

and the 128 levels above) mapped onto thirty-eight unique luminance output values, which

we used to naturally bin observers’ estimates based on the mouse position-RGB index map-

ping.

We defined the luminance contrast of these thirty-eight unique levels in terms of Weber
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contrast,

cweber =
Istimulus − Ibackground

Ibackground
(4.1)

where Istimulus was the disc luminance and Ibackground was the luminance of the gray back-

ground. The eight test luminance contrasts were set according to fixed RGB indices using

a pseudo-linear increment array; specifically, RGB values of 127 + [8, 16, 24, 32, 48, 64, 80,

96] were used. Using the measured luminance values for these indices, the resulting lumi-

nance contrasts spanned from approximately 7-76% contrast. The circular discs measured

1◦ in diameter, and were uniform in luminance, except for the very edge of the disc (raised-

cosine, edge width 0.1◦).

4.2.3 Experiments 2 and 3

We ran two control experiments (n = 8 observers each), in an effort to understand the pos-

sible roles played by a number of task and stimulus-related factors in Experiment 1. Partic-

ipant recruitment and informed consent procedures followed similar protocols to those

described above.

Experiment 2 was identical to Experiment 1, except that the match disc was set to 0% con-

trast at onset. Experiment 3 was identical to Experiment 1 except that dark luminance discs

were presented on a gray background. We subtracted the array of RGB increments from

mid-level gray to calculate each of the eight tested luminance contrasts. We used the same

restricted gamma table (0-93.5 cd/m2). For each RGB index below mid-level gray, we mea-

sured the actual output luminance value using the photometer, and confirmed that there

were 76 unique luminance values in the 0-127 RGB range. Note that the eight luminance

contrasts tested in Experiment 3 differed by small percentage amounts from those used in
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Experiment 1, presumably due to limitations of the hardware and the LUT discretization

described above.

4.2.4 Summary data analyses

We calculated the median and inter-quartile range of each distribution for each observer

separately. We then fit the interquartile range data with a power law, using the MATLAB

function lsqcurvefit.m, to ascertain whether the data conformed approximately to Weber’s

Law. That is, we found the least-squares fit that best described the data according to:

ĉ75 − ĉ25 = kcw (4.2)

where k scales the power law, with exponent w, relating luminance contrast of the disc to

the width (interquartile range) of the estimate distribution. Perfect Weber’s Law behavior

would give an exponent of one for this relation; in investigations of luminance contrast dis-

crimination, best-fit slope values in the range of 0.5-0.7 have been typically reported (Legge

& Foley, 1980; Pestilli et al., 2011). In the main text, we report the mean (s.e.m.) of the fitted

slope to two decimal places.

4.2.5 Probabilistic model of neural responses

Maximum-likelihood estimation of contrast

We begin by describing the generative model for our task (Figure 4.2). A stimulus of lu-

minance contrast c is presented to the observer. The stimulus is encoded by a population

of noisy sensory neurons, giving rise to a vector of spike counts r = {r1, r2, r3, ..., rn}. We as-
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Figure 4.2: Delayed esধmaধon of luminance contrast: encoding-decoding model. We assume that the presented
contrast, c, gives rise to normally-distributed, Poisson firing rates in an array of neurons, r, and that the observer
performs maximum-likelihood esধmaধon on these responses, to obtain the esধmate ĉ.

sume that the observer then decodes this set of spike counts using maximum-likelihood

estimation, to arrive at an estimate ĉ.

We assume that spike counts are independent across neurons and governed by Poisson

noise. The probability of spike count vector r, given luminance contrast c, is thus (Dayan &

Abbott, 2001),

p(r|c) =
∏
i

1
ri!
e−gi(c)gi(c)ri , (4.3)

where gi(c) represents the contrast gain function for neuron i. We assume this gain function

takes the form of a Naka-Rushton equation (Naka & Rushton, 1966),

gi(c) = ai
cn

cn + cn50
(4.4)

where the responsiveness to contrast is governed by the exponent, n, the semi-saturation

contrast, c50, and the maximum firing rate for the neuron, ai. We assume that maximum fir-

ing rates can vary across neurons, but that they might average out in the population during

read-out. For simplicity, we did not consider heterogeneity in the other sensitivity parame-

ters. Assuming the observer is performing maximum-likelihood estimation on the underly-
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ing firing rates, then the estimate contrast, ĉ, is given by

ĉ = argmax
c

log p(r|c) (4.5)

Some straightforward calculations show that,

ĉ = argmax
c

(
− g(c)

∑
i
ai + log g(c)

∑
i
ri
)

(4.6)

= g−1
( r
a

)
, (4.7)

where a =
∑

i ai, r =
∑

i ri, and g−1 is the inverse function of g. If we approximate the

Poisson distribution by a normal distribution, then r ∼ N (ag(c), ag(c)) and

r
a ∼ N

(
g(c), g(c)a

)
. (4.8)

By transforming this probability distribution under the mapping r
a 7→ g−1

( r
a
)
, we obtain

the conditional probability of estimate contrast, ĉ, given c, as

p(̂c|c) =
√

a
2π

g′(̂c)√
g(c)

e−
a
2
(g(̂c)−g(c))2

g(c) (4.9)

Model fitting

Using a maximum-likelihood procedure, we found the best-fitting parameter values of the

model for each observer individually. In model fitting, we also allowed for a lapse rate pa-

rameter, λ. We assume that lapses were uniformly distributed across possible estimate val-

ues. Thus, there were four free parameters in total - three gain parameters (a, n, c50) and λ.
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Model-fitting was done throughout using the MATLAB function fminsearch.m, which

is a standard optimization algorithm based on the Nelder-Mead simplex algorithm, and

suitable considering the relatively small number of free parameters. We allowed each of the

parameters to vary within broad but finite bounds (see Table 4.1).

4.3 Results

4.3.1 Delayed estimation of luminance contrast

Observers (n = 8) were presented with small, briefly flashed (200 ms) circular discs in Ex-

periment 1, and had to reconstruct the presented contrast by adjusting the luminance of

a match disc (via horizontal movements of a computer mouse). The median and inter-

quartile range of estimate distributions for several individual observers are illustrated in

Figure 4.3A, and example estimate histograms from Experiment 1 are depicted in Figure

4.4A. In general, the position and shape of the distributions changed in a highly consistent

fashion across all observers tested. As luminance contrast of the disc increased, so too did

the median and width of the estimate distributions. There appeared to be a systematic ten-

dency for the median estimates to be shifted slightly towards the mean presented luminance

contrast; this effect could have several possible causes, such as the bounded nature of the

response range, some form of effort-versus-accuracy trade-off in adjusting the match disc

luminance, or a Bayesian prior.

The dependence of the estimate inter-quartile range on disc contrast was well fit by a

power law, with the mean (s.e.m.) of the exponent across observers equal to 0.54 (0.05)

(Figure 4.3B). Thus, the exponent, or slope on a log-log axis, stood at a value similar to

those typically found in traditional contrast-discrimination tasks (Legge & Foley, 1980;
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Figure 4.3: Delayed esধmaধon of luminance contrast: data. A) Results from Experiment 1 are illustrated, with plots of
the median and inter-quarধle range of esধmates for several individual observers. The circular disc could take one of
eight luminance contrasts (different colors) across trials. B) Mean (s.e.m.) of the inter-quarধle range across observers
is ploħed against test luminance contrast, for Experiment 1 (increments) and Experiment 3 (decrements). For posiধve
luminance increments, the data conformed to a near-miss to Weber’s Law, while the slope of the funcধon was much
more flat for decrements. Note that, for Experiment 3, several of the test contrasts differed slightly from the color-
coded percentage values given in A); for clarity of presentaধon, we uধlize the same color-coding scheme for both
datasets.

Pestilli et al., 2011). For example, Legge & Foley (1980) found the slope of the relation be-

tween pedestal contrast and contrast-discrimination threshold to lie at around 0.6, a rela-

tion commonly referred to as the near-miss to Weber’s Law (May & Solomon, 2015).

4.3.2 Experiments 2 and 3

In a pair of control experiments, we tested whether these results were dependent on the

match disc having a non-zero onset contrast, and on the polarity of the stimuli. As on-

set contrast was selected randomly in Experiment 1, the match disc was more often than

not of higher contrast than a recently-presented low-contrast test disc. Thus, some local

adaptation or memory substitution process could have systematically affected the shape of

estimate distributions for low contrast stimuli. By starting the match at 0% contrast, and re-

quiring observers to ‘dial up’ the memorized target contrast, we hoped to ascertain whether

such effects might be present in the data. Data collected in this first control experiment

were largely indistinguishable from results of Experiment 1, with the relationship between
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inter-quartile range and test contrast again following a near-miss to Weber’s Law i.e., with

a mean (s.e.m.) slope on a log-log axis of 0.66 (0.07). It is possible that the slightly steeper

slope compared to Experiment 1 reflects some systematic process; for the present purposes,

however, we see no reason to question the general method of probing used in Experiment 1.

We also tested the role of disc polarity in our paradigm. In an idealized scenario, we had

assumed that disc polarity would not matter greatly. However, there is some evidence to

suggest that dark and light patches play asymmetric roles in luminance and contrast dis-

crimination at high luminance values (Whittle, 1986; Kingdom & Whittle, 1996), as well

as evidence for a general asymmetry in the neural representations of darks and lights (Yeh

et al., 2009; Kremkow et al., 2014). To test this possibility, we re-ran the basic experiment,

this time using negative luminance increments instead of positive. Of note, many observers

in this task now had a substantially broader estimate distribution for low-contrast stimuli,

with the distributions increasing in width only negligibly with increasing contrast (Figure

4.3B, and see raw data Figure 4.4B). On a log-log axis, the slope relating test contrast and

inter-quartile range was much shallower than for the increment experiments, with a mean

(s.e.m.) across observers of 0.15 (0.05).

Is there some asymmetry in luminance processing at play here? For the present moment,

we can only speculate on what the important factors are. For example, there is some evi-

dence to suggest that positive and negative luminances give rise to more quickly saturating

or more linear neural responses, respectively (Kremkow et al., 2014). Perhaps the relatively

broad distribution of estimates for low-contrast decrements, relative to increments, re-

flects an asymmetry in the slope of the initial part of the contrast response, an effect which

might arise potentially very early in visual processing (Kremkow et al., 2014). In passing,
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Figure 4.4: Delayed esধmaধon of luminance contrast: model fits. A) and B) Fits of the probabilisধc model to esধ-
mate distribuধons from Experiment 1 (increments) and Experiment 3 (decrements), respecধvely. Example data from
a couple of individual observers are presented for each experiment. Note that, for Experiment 3, several of the test
contrasts differed slightly from the color-coded percentage values given in A); for clarity of presentaধon, we uধlize
the same color-coding scheme for both datasets. In addiধon, note that the discreধzaধon of the esধmate response
axis differed across experiments, reflected here in differences in the granularity of the histogram bars across experi-
ment. See Materials and Methods for details.

it is worth mentioning that there is some behavioral evidence to suggest that positive and

negative luminance processing asymmetries underlie an effect we discussed in Chapter 3,

specifically the decrease in contrast-discrimination thresholds for high-contrast sinusoidal

gratings (Whittle, 1986; Kingdom & Whittle, 1996).

4.3.3 Model

We developed a four-parameter model of contrast estimation based on a hypothesized neu-

ral substrate (Figure 4.2). Specifically, we assumed that luminance contrast, c, is encoded by
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a population of noisy Poisson neurons whose mean spike counts are related to c via a Naka-

Rushton gain function. If we assume that the observer performs maximum-likelihood esti-

mation on the responses to obtain a contrast estimate ĉ, then a simple, closed-from expres-

sion for the conditional probability distribution, p(̂c|c), can be derived (see Materials and

Methods).

The model provided quantitatively good fits to the estimate distributions from indi-

vidual observers in Experiment 1, with the widths of the predicted distributions systemati-

cally increasing as a function of test luminance contrast (Figure 4.4A). Parameter estimates

from fits to individual observer data are provided in Table 4.1. The exponent of the Naka-

Rushton equation lay consistently in the range around 2, with a mean (s.e.m.) across ob-

servers of 2.06 (0.21). Values in this range have been consistently observed in luminance-

and contrast-response measurements in early visual cortical areas, with smaller values typi-

cally reported in fits to retinal data (Wilson, 1999). The preponderance of fitted values near

2 is also interesting given the suggested importance of this range of exponent value for in-

formation transmission efficiency in the contrast response (Gottschalk, 2002).

There did appear, however, to be some systematic deviations between the measured and

fitted distributions. For example, model fits to data from the reversed polarity experiment

(Experiment 3) were, on visual inspection, less satisfactory in general (Figure 4.4B), suggest-

ing again that some modified contrast response model might be appropriate when fitting

that dataset. In addition, for the low-contrast increment conditions in Experiment 1, the

model seemed to over-estimate the position of the peak of observer estimates, with the ac-

tual estimates weighted towards lower contrasts (Figure 4.4A). This effect was present in

numerous individual observers data, and is puzzling considering that the median estimates

78



Delayed estimation of luminance contrast: model parameters

S1 S2 S3 S4 S5 S6 S7 S8 Mean (s.e.m.)

Param
a 10.1 16.6 9.3 9.7 9.4 30.7 15.1 11.3 14.0 (2.6)
n 1.79 1.85 2.74 2.11 2.75 0.88 2.40 1.96 2.06 (0.21)
c50 0.89 0.47 1.00 0.44 0.73 0.14 0.98 1.00 0.71 (0.11)
λ 0.065 0.002 0.055 0.039 0.044 0.0001 0.034 0.037 0.035 (0.008)

Table 4.1: Best-fit parameter values of the encoding-decoding model fits to Experiment 1 data. Parameters could
vary within broad but finite bounds: a, 1-50; n, 0.1-4; c50, 0-1; λ, 0-1. In the table, fiħed values and their mean
(s.e.m.) are rounded, with a level of precision that seemed appropriate for each parameter type.

were biased in the opposite direction. A number of possible factors might be involved.

First, our assumption that all neurons have the same g(c) is unrealistic (Albrecht & Hamil-

ton, 1982). Second, we used maximum-likelihood instead of posterior mean read-out; one

could imagine that in an estimation task, observers minimize the expected squared error

and therefore choose the posterior mean. Third, the normal approximation to Poisson fir-

ing statistics might not be adequate; indeed our assumption of perfectly Poisson noise may

be insufficient in general, with a potential role played by trial-to-trial gain fluctuations in

defining the shape of the estimate distributions (Goris et al., 2014; May & Solomon, 2015).

4.4 Discussion

By providing continuous, high-resolution measurements of memory contents, delayed-

estimation tasks have elucidated the nature of VSTM, most notably for orientation and

color (Zhang & Luck, 2008; Bays et al., 2009; van den Berg et al., 2012). Such features are

relatively stable in memory across time, presumably due to the topographic form of their
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neural representations. For intensity-coded features such as luminance contrast, however,

VSTM might be less stable over time (Magnussen & Greenlee, 1999). Unfortunately, the

processes of encoding and retaining luminance contrast information over brief delays have

been characterized predominantly using relatively coarse, 2-IFC discrimination tasks (Legge

& Foley, 1980; Pestilli et al., 2011). Here, we examined memory for luminance contrast us-

ing delayed estimation. We systematically measured estimate distributions for luminance

contrasts spanning the contrast axis, using small uniform discs as stimuli. Memoranda for

specific luminance contrasts were clearly well-defined, with estimate distributions system-

atically shifting position as a function of stimulus luminance contrast, and showing a small

bias towards the mean presented contrast. We also found evidence of a monotonic increase

in estimate distribution width as contrast increased, reminiscent of the near-miss to We-

ber’s Law often cited in the contrast-discrimination literature (Legge & Foley, 1980; May &

Solomon, 2015).

We then fit a low-parameter, neurally plausible probabilistic model to the distributions.

The model assumed Poisson noise and maximum-likelihood read-out, and incorporated a

realistic form of contrast response function (i.e., Naka-Rushton). Using a mixture model

approach that accommodated sources of trial-to-trial noise such as lapses, we successfully

fit the general shape of the estimate distributions. The model replicated the monotonic

increase in estimate distribution width with increasing stimulus contrast, and predicted

neurally plausible gain parameter values. Control experiments indicated that match onset

contrast played no substantial role in affecting the shape of observers’ estimate distribu-

tions; however, polarity of the disc appeared to be influential, with a much flatter form to

the curve depicting distribution width as a function of stimulus contrast. We hypothesize
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that this difference may be related to asymmetries in the neural representation of darks and

lights (Whittle, 1986; Yeh et al., 2009; Kremkow et al., 2014).

Before concluding, it is appropriate that we also address several shortcomings in the

present work. From an empirical point of view, one weakness of the psychophysical meth-

ods in this chapter was the lack of any control for observer eye movements. For example,

observers may have systematically deviated from fixation during trials, potentially placing

the small disc at different eccentricities on different trials. This could be particularly prob-

lematic for our task, given the well known differences in contrast sensitivity as a function of

retinal eccentricity (Virsu & Rovamo, 1979; Regan & Beverley, 1983). Future extensions of

this work should control for small eye movements e.g., by recording observer eye position

during test sessions and, at analysis stage, including trial exclusion criteria similar to those

used in Chapter 2. From a theoretical perspective, our model attempts might also benefit

from incorporating trial-to-trial fluctuations in gain magnitude into the model. Such mod-

ulations are known to affect firing-rate statistics in systematic ways (Goris et al., 2014). It

remains to be seen whether such a model would better approximate the present data.

Overall, the delayed-estimation protocol we developed is a successful first step in un-

derstanding the underlying nature of VSTM for luminance contrast. Luminance contrast

encoding has typically been investigated using the discrimination paradigm, where an ob-

server is required to detect the occurrence of a stimulus change (e.g., a contrast increment)

between two temporally-separated stimuli. Performance on such tasks is typically summa-

rized by fitting some quantitative model to the data (i.e., a psychometric function), from

which a criterion performance level is read off (i.e., a threshold). By comparing thresholds

across different stimulation conditions (e.g., with or without covert attention, distractors,
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etc.), investigators have often sought to better understand the underlying neural processes

involved in encoding and VSTM. However, whereas 2-IFC discrimination tasks only in-

vestigate the underlying probabilistic representations somewhat superficially (Magnussen

et al., 1996; Pestilli et al., 2011), our simple task provided a very precise depiction of a funda-

mental sensory coding ability.
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5
Conclusion

5.1 Encoding-decoding models of luminance contrast processing

The encoding of local stimulus properties such as orientation, color, and lumi-

nance contrast has been studied in great detail over the years, using myriad behavioral and

neural recording techniques (Hubel & Wiesel, 1962; Legge & Foley, 1980; Lennie et al.,

1990; Brouwer & Heeger, 2009). The starting point for such investigations has typically

been at the level of single-stimulus processing, and for performance on simplified tasks such

as 2-IFC discrimination. The present thesis focused primarily on the encoding-decoding of

luminance contrast, a stimulus property fundamental to all of visual processing. We studied
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observer behavior using two complementary experimental protocols (discrimination and

delayed estimation), and for both single-stimulus and two-stimulus tasks. We also devel-

oped neural models of observer performance on these tasks. Below, we recap briefly on the

main thesis results, and discuss implications of the results for our understanding of a num-

ber of topics related to sensory processing. Specifically, we first focus on the implications

for research on attentional selection and VSTM, along the way discussing possible future

extensions of the experimental work described in Chapters 2 and 4. We then describe po-

tential links to research on neural noise statistics and encoding-decoding models, suggesting

ways in which the encoding-decoding approaches in Chapters 3 and 4 might be extended in

future investigations. We then conclude with a few brief closing statements.

5.2 Implications for research on attentional selection

Despite the central role attentional orienting plays in behavior, the neural bases of atten-

tional modulation and selection remain poorly understood. A number of studies now il-

lustrate that a primary neural correlate of attention consists of an additive baseline offset in

neural response (Buracas & Boynton, 2007; Murray, 2008; Pestilli et al., 2011; Chen & Sei-

demann, 2012). For example, by simultaneously measuring behavioral performance and the

BOLD fMRI response during a contrast-discrimination task, Pestilli et al. (2011) found that

the enhancement in behavioral performance due to attention could be modeled by combin-

ing an additive offset in sensory response with a max-pooling rule prior to decision. Yet, a

number of other findings have also emphasized the apparent multiplicative nature of atten-

tional modulation of neural responses (McAdams & Maunsell, 1999; Reynolds & Heeger,

2009; Herrmann et al., 2010; Itthipuripat et al., 2014). In one study, the authors systemati-
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cally manipulated the spatial extent of an observer’s attentional focus, while measuring the

contrast-dependence of orientation discrimination for stimuli of different size (Herrmann

et al., 2010). Results were in general agreement with a normalization model of attention, in

which attention is implemented as a multiplicative weighting of incoming sensory signals

(Reynolds & Heeger, 2009).

The results of Chapters 2 provide some insight into the neural and computational pro-

cesses governing attentional selection, by highlighting a difference in the efficiency of se-

lection as a function of task: under conditions of target location uncertainty, contrast-

discrimination performance at a target location was more substantially hindered by high-

contrast distractors than was orientation discrimination. These results indicate that se-

lection of sensory responses in the contrast-discrimination task was spatially coarse in na-

ture, echoing several prior related findings (Pestilli et al., 2011; Chen & Seidemann, 2012).

In contrast, orientation-related information appeared to be more efficiently selected and

decoded. Arguably, the task-dependence of these effects suggests some re-examination of

key ideas on the attentional modulation and selection of early sensory neural responses. In

Chapter 3, we attempted to develop computational models of the contrast- and orientation-

discrimination behaviors measured in Chapter 2, and found that neither of two standard

sensory interaction models could convincingly replicate data from the two tasks simultane-

ously. Together, these empirical and computational results suggest the particular task that

an observer is engaged in (e.g., contrast- vs. orientation-based) is likely also a key factor in

the types of behavioral effects researchers observe in attentional selection tasks. Thus, fu-

ture attempts at discriminating between additive and multiplicative effects of attention on

neural response should at least acknowledge the role that feature dimension likely plays,
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designing multi-dimensional sets of experiments and associated models, while keeping

other attentional and stimulus manipulations constant. Some efforts in this regard have

recently been made in VSTM research and elsewhere (Matthey et al., 2015; Orhan & Ma,

2015), where we now turn.

5.3 Implications for the study of VSTM

Traditionally, studies of VSTM have quantified decoding performance using relatively

coarse metrics such as discrimination thresholds or change detection performance (Palmer,

1990; Magnussen & Greenlee, 1999; Ma et al., 2014). In Chapter 4, we added to a growing

body of research that attempts to measure more directly the noise properties of memoranda

supporting basic visual feature discrimination and comparison over brief delays (Wilken &

Ma, 2004; Zhang & Luck, 2008; Fougnie et al., 2012; van den Berg et al., 2012; Bays, 2014).

Using a delayed-estimation protocol, we successfully measured and characterized the shape

of observers’ estimate distributions for luminance contrast.

How do these results contribute to research on VSTM, and how might they be extended

in future? First, we note that the recent surge of interest in using delayed estimation has

almost entirely focused on the encoding-decoding of stimulus features such as orientation

and color (Fougnie et al., 2012; van den Berg et al., 2012; Bays, 2014). Luminance contrast,

on the other hand, has often been treated as a nuisance parameter in such investigations, or

has been utilized to create coarsely defined reliability conditions e.g., low vs. high reliability.

Thus, we have developed a high-quality, yet simple experimental protocol for studying de-

layed estimation along an intensity-coded feature dimension. The experimental results, and

associated neural model in particular, help to dispel any notion that memory for luminance
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contrast is not easily characterized.

Future research might develop along a number of directions, for which our protocol

could serve as a basis. For example, the task in Chapter 4 could be extended to study the

effects of temporal delay on VSTM for luminance contrast, thereby obtaining a more fine-

grained understanding of delay effects than provided by discrimination tasks (Magnussen

& Greenlee, 1999). In addition, increasing evidence suggests that individual item represen-

tations systematically decrease in precision with increasing set-size, results which add to the

view that VSTM relies on a noisy, continuous neural resource (Fougnie et al., 2012; van den

Berg et al., 2012). Our protocol could be extended to parametrically vary set-size, thereby

providing potentially greater insight into the stimulus interactions reported in Chapter 2

and elsewhere (Pestilli et al., 2011). One obstacle prevented this type of investigation un-

til now: for features such as orientation and color, an implicit assumption is often made

that estimate distribution shape does not vary greatly along the axis of the relevant feature

dimension, leading to relatively simplified designs for set-size type experiments (e.g., pre-

senting an array of randomly oriented gabors). However, as the data in Chapter 4 illustrate,

this assumption would be grossly invalid for the case of luminance contrast; estimate dis-

tributions change shape dramatically as a function of stimulus contrast. Future contrast

estimation experiments that manipulate set-size would need to account for this in their de-

sign, parametrically varying the array of test contrasts and controlling for direct effects of

distractors on target stimulus encoding and decoding. The models of sensory interaction

described in Chapter 3 may provide some guidance here.
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5.4 Neural noise and encoding-decoding

The present results may also be of relevance to recent debate on the nature of neural noise

statistics and encoding-decoding performance. Numerous recent delayed-estimation tasks

have consistently found that error distributions are non-Gaussian in form, perhaps reflect-

ing trial-to-trial fluctuations in encoding precision (Fougnie et al., 2012; van den Berg et al.,

2012; Bays, 2014). While the model presented in Chapter 4 did not incorporate sources of

trial-to-trial gain fluctuation, more realistic noise models may be worth investigating in

fitting estimation data for luminance contrast. As an intensity-coded feature, luminance

contrast is likely encoded into memory in a relatively abstract, albeit firing-rate dependent

way (Albrecht & Hamilton, 1982; Xing et al., 2014). Thus, trial-to-trial fluctuations in gain

magnitude (i.e., double stochasticity) would presumably directly affect the trial-to-trial vari-

ation in estimates made for a given luminance contrast. Overall, estimate distibutions for

luminance contrast might be impacted more directly by the stochastic properties of early

sensory encoding i.e., the shape of observers’ estimate distributions might reflect properties

of Poisson or super-Poisson noise statistics in some principled fashion, with predictable

variation across different luminance contrast levels (Shadlen & Newsome, 1998; Goris

et al., 2014). In contrast, the key limiting factors on precision for tasks involving circular,

Gaussian-like tuning functions (e.g., orientation tuning curves) might be network com-

putations that affect response amplitudes for all simultaneously-stored items (e.g., divisive

normalization), as well as noise fluctuations that resemble the signal of interest (Bays, 2014;

Moreno-Bote et al., 2014). It remains to be seen whether a model that incorporates trial-to-

trial gain fluctuations will better approximate the data in Chapter 4.
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5.5 Final comments

Using a combined empirical and computational approach, this thesis explored the nature

of luminance contrast encoding and decoding, fundamental operations of visual system

processing. By measuring observer performance in a variety of behavioral tasks, and fitting

appropriately chosen mathematical models to the data, we highlighted important character-

istics of the encoding and decoding of stimulus luminance contrast, such as the large effect

of irrelevant distractors on basic discrimination abilities, and the profile of observers’ inter-

nal, noisy estimates of luminance contrast. The thesis findings are relevant to a variety of

subfields within the visual and sensory neurosciences, such as research on attention, mem-

ory and general models of stimulus encoding-decoding.
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