Memory precision in a contrast estimation task

¹Center for Neural Science, New York University, ²Department of Psychology, New York University

Goal

- Delayed-estimation tasks have elucidated the nature of visual short-term memory (VSTM), most notably for orientation and color [1].
- Such features are relatively stable in VSTM over time, presumably due to the topographic or pathway-specific nature of their encoding.
- For intensity-coded features such as luminance contrast, however, VSTM might be less stable over time; yet, data relevant to this question come from only coarse 2-AFC tasks [2].
- Here, we systematically investigated VSTM for luminance contrast using delayed estimation.

Task

- N = 8 observers, 1600 trials/observer
- Circular discs (1° diameter, 4° eccentricity)
- Adjust contrast of 2nd disc to match memory of 1st (using horizontal motions of mouse)
- 8 test contrasts (7-76%, Weber contrast)
- Gamma-corrected display (mean 45.4 cd/m²)

Results

Interquartile range of estimate distributions

• Distributions shifted with increasing test contrast, and were highly consistent across observers.

Encoding-decoding model

• We assume the stimulus contrast, c, is encoded in the summed spike count, r, of a population of Poisson neurons:

$$r \sim \text{Poiss}(g(c))$$

• We allow the gain, g, to vary with contrast according to a Naka-Rushton equation:

$$g(c) = R_{\text{max}} \frac{c^n}{c^n + c_{50}^n}$$

Likelihood function:

$$p(r|c) = \frac{1}{r!}e^{-g(c)}g(c)^r$$

• Estimate contrast, \hat{c} , is given by (MLE):

Model parameters

 $R_{
m max}$: maximum spike count

 $n: \mathsf{contrast} \ \mathsf{exponent}$

 c_{50} : semi-saturation term

 λ : lapse-rate term

$\hat{c} = \arg\max_{c} \left(-g(c) + r \log g(c) \right)$

Model fits

Model provided good quantitative fits to the distributions.

• Mean params (s.e.m.): $R_{\max}: 13.23 \ (1.92) \quad c_{50}: 0.71 \ \ (0.11) \\ n: 2.07 \ \ (0.20) \qquad \lambda: 0.034 \ \ (0.007)$

Conclusions

- Estimate distributions for luminance contrast have not previously been investigated using delayed estimation, and may provide rich information for testing theories of VSTM for luminance contrast.
- We measured these distributions and successfully characterized their shapes using a probabilistic model of neural responses.

Acknowledgements: This work was supported by NIH R01-EY020958 (to WJM). References: [1] Ma et al., Nat. Neurosci., 17: 347-356, 2014; [2] Magnussen & Greenlee, Psychol. Res., 62: 81-92, 1999.